

Search for the exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two τ leptons √s=13 TeV

HEP 2018 Physics Department – University of Cyprus

E. Erodotou, C.Caillol, J.Mousa, P.Razis

2HDM + S

- Contains 2 higgs doublets H_1 and H_2 and one additional singlet S
- Predicts 7 physical states:
 - 3 CP even (scalar)
 - 2 CP odd (pseudoscalar)
 - 2 Charged
- Four types of 2HDM+S forbid FCNC at tree level
- Decay $h(125 \text{GeV}) \rightarrow 2\alpha \rightarrow 2\mu 2\tau$ is favored in 2HDM+S Type-3

	Type-1	Type-2	Type-3	Type-4
u	H_{1}	H ₁	H ₁	H ₁
d	H ₁	H ₂	H ₁	H_2
e	H ₁	H ₂	H_2	H ₁

2HDM + S

- For the decay $h(125 \text{GeV}) \rightarrow 2\alpha \rightarrow 2\mu 2\tau$ the largest branching fraction is obtained in Type 3 for large values of tan β
- Largest branching fraction for Type-3 (0.6%) : For tanβ>1 decays to leptons are enhanced over the decays to quarks

$h(125 \text{GeV}) \rightarrow \alpha \alpha \rightarrow 2 \mu 2 \tau$

- Di-muon pair has excellent mass resolution, di-tau pair has reasonable mass resolution backgrounds are low
- Four ditau final states are studied $e\tau_h$, $\mu\tau_h$, $e\mu$, τ_h τ_h
- Ditau final states with two muons or two electrons are not studied because of the low branching fraction and of the large contribution of ZZ→4l background events
- LHC 7 & LHC 8 allows Br of the 125 GeV higgs boson into BSM states to be O(20%-50%)

Simulated Signal Samples

Signal Samples

- Signal: $h(125GeV) \rightarrow 2\alpha \rightarrow 2\mu 2\tau$ generated with AMC@NLO
- 9 MC Samples 15,20,25,30,35,40,45,50,55,60 GeV

Signal MC simulations	Nb of gen. events
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-15_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-20_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-25_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-30_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-35_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-40_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-45_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-50_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-55_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000
SUSYGluGluToHToAA_AToMuMu_AToTauTau_M-60_TuneCUETP8M1_13TeV_madgraph_pythia8	250 000

Via VBF

SUSYVBFHToAA_AtoMuMu_AtoTauTau_M40_4F_TuneCUETP8M1_13TeV_madgraph_pythia8/MINIAODSIM/PUMoriond17_80X_mcRun 2 asymptotic 2016 TrancheIV v6-v3/70000	250000
SUSYVBFHToAA_AtoMuMu_AtoTauTau_M20_4F_TuneCUETP8M1_13TeV_madgraph_pythia8/MINIAODSIM/PUMoriond17_80X_mcRun 2_asymptotic_2016_TrancheIV_v6-v3/70000	250000
SUSYVBFHToAA_AtoMuMu_AtoTauTau_M60_4F_TuneCUETP8M1_13TeV_madgraph_pythia8/MINIAODSIM/PUMoriond17_80X_mcRun 2_asymptotic_2016_TrancheIV_v6-v3/70000	250000

Simulated Signal Samples

Additional Signal Process: $h(125GeV) \rightarrow 2\alpha \rightarrow 4\tau$

$$rac{\mathcal{B}(a o au au)}{\mathcal{B}(a o \mu \mu)} \simeq rac{m_{ au}^2}{m_{\mu}^2}$$

- The probability of having at least 2 muons in the final state with four taus is 13.6%
- 20 times more $h(125 \text{GeV}) \rightarrow 2\alpha \rightarrow 4\tau$ than $h(125 \text{GeV}) \rightarrow 2\alpha \rightarrow 2\mu 2\tau$
- Additional filter at generated level selects at least two muons with $P_T > 5$ Gev and $P_T > 15$ GeV

Signal MC simulations	Gen. events	Filter eff.
SUSYGluGluToHToAA_AToTauTau_AToTauTau_FilterMu5Mu15_M-20_TuneCUETP8M1_13TeV	30M	2.73%
SUSYGluGluToHToAA_AToTauTau_AToTauTau_FilterMu5Mu15_M-30_TuneCUETP8M1_13TeV	30M	2.81%
SUSYGluGluToHToAA_AToTauTau_AToTauTau_FilterMu5Mu15_M-40_TuneCUETP8M1_13TeV	30M	2.92%
SUSYGluGluToHToAA_AToTauTau_AToTauTau_FilterMu5Mu15_M-50_TuneCUETP8M1_13TeV	30M	3.10%
SUSYGluGluToHToAA_AToTauTau_AToTauTau_FilterMu5Mu15_M-60_TuneCUETP8M1_13TeV	30M	3.39%

Corrections to simulated samples

• τ_h energy scale : the energy of τ_h in simulations is corrected based on the reconstructed decay mode (Z- $\rightarrow \tau \tau$ TauPOG)

-1.8%	1 prong
0.4 %	3 prong

- τ_h Identification Efficiency : Data/MC scale factor corresponding to the loose working point of the MVA τ_h isolation is 0.99% (TauPOG with a tag-and-probe method in Drell-Yan events)
- Energy Scale of e/mu faking τ_h : depend on the reconstructed decay mode with largest correction to 9.5% in 1-prong decays for electrons faking τ_h candidates
- PileUp Reweighting: Reweighed using a minimum bias cross section of 69.2mb
- Electron and Muon Identification efficiency: Muon Scale Factor HTT group, Electron SF from Egamma POG

MC and Data Samples

Data Samples

		Integrated
Dataset	Run range	Luminosity
/DoubleMuon/Run2016B-03Feb2017-ver2-v2/MINIAOD	272007-275376	5.788 /fb
/DoubleMuon/Run2016C-03Feb2017-v1/MINIAOD	275657-276283	2.573 /fb
/DoubleMuon/Run2016D-03Feb2017-v1/MINIAOD	276315-276811	4.248 /fb
/DoubleMuon/Run2016E-03Feb2017-v1/MINIAOD	276831-277420	4.009 /fb
/DoubleMuon/Run2016F-03Feb2017-v1/MINIAOD	277772-278808	3.102 /fb
/DoubleMuon/Run2016G-03Feb2017-v1/MINIAOD	278820-280385	7.540 /fb
/DoubleMuon/Run2016H-03Feb2017-ver2-v1/MINIAOD	280919-284044	8.606 /fb
/DoubleMuon/Run2016H-03Feb2017-ver3-v1/MINIAOD	280919-284044	see above

 The analysis is based on 2016 data with a corresponding integrated luminosity of 35.9 fb⁻¹ in double muon datasets at √s=13 TeV

Background MC Samples

Background MC simulations	Cross section
ZZTo4L_13TeV_powheg_pythia8	1.256 pb
GluGluToContinToZZTo2mu2tau_13TeV_MCFM701_pythia8	2*0.00319 pb
GluGluToContinToZZTo2e2tau_13TeV_MCFM701_pythia8	2*0.00319 pb
GluGluToContinToZZTo2e2mu_13TeV_MCFM701_pythia8	2*0.00319 pb
GluGluToContinToZZTo4e_13TeV_MCFM701_pythia8	2*0.00159 pb
GluGluToContinToZZTo4mu_13TeV_MCFM701_pythia8	2*0.00159 pb
GluGluToContinToZZTo4tau_13TeV_MCFM701_pythia8	2*0.00159 pb

Scaled to NLO cross section

Event Selection

μμ <mark>eμ</mark>	μμ <mark>ετ</mark>	μμ <mark>μτ</mark>	μμ ττ		
Leading muon P _T >18 GeV					
	Subleading r	muon P _T >9 GeV			
	Δ]	R<0.5			
	eta <2.4, Mu	uon ID Medium			
	Isc	><0.20			
е	е	μ	τ		
P _T >7 GeV	P _T >7 GeV	P _T >5 GeV	P _T >18.5 GeV		
eta <2.5	eta <2.5	eta <2.4	eta <2.3		
MVA 80%	MVA 80%	Muon ID	Loose MVA iso		
		Medium	Loose anti-mu		
		Iso<0.20	VL anti-e		
μ	τ	τ	τ		
P _T >5 GeV	P _T >18.5 GeV	P _T >18.5 GeV	P _T >18.5 GeV		
eta <2.4	eta <2.3	eta <2.3	eta <2.3		
Muon ID	Loose MVA iso,	Loose MVA iso	Loose MVA iso		
Medium	Loose anti-mu	Loose anti-mu	Loose anti-mu		
Iso<0.20	VL anti-e	VL anti-e	VL anti-e		

Event Selection

If more than two muons in the final state mass m_α→µµ is formed from the leading muon and the highest P_T opposite sign muon among the remaining muons

- Opposite Sign in each pair
- Trigger: Double Muon Trigger with online thresholds of 8 and 17 GeV
- bjet vetoes:

Events with at least one jet with $P_T > 20 \text{GeV}$, |eta| < 2.4, Medium working point on CSV

► Reduce the contribution of the reducible background tt and of the irreducible ttZ

Irreducible Background Estimation

- Estimated from MC simulations → Scaled to NLO cross sections
- $qq \rightarrow ZZ \rightarrow 4l : largest$
- $gg \rightarrow ZZ \rightarrow 4l : 10\%$
- ttZ, WZZ, ZZZ ,SM Higgs Boson: Estimated from MC → Negligible and become zero after optimization selection

 $ZZ \rightarrow 4l$ is well described in mmee final state

Reducible Background

- Events where at least one jet is misidentified as a lepton
- Z+jets, WZ+jets, ZZ \rightarrow 2l2q, tt QCD multijet
- Fake rate = Events passing id+iso/ Events with loosened id+iso

Reducible Background - Yield

- Events passing all selection criteria for the signal region except that one or two tau candidates fail iso + id are reweighed as a function of fake rate f(P_T)
 - +f1(P_T)/(1-f1(P_T) : 1st fake lepton , +f2(P_T)/(1-f2(P_T) : 2nd fake lepton
 - -f1(P_T)f2(P_T)/(1-f1(P_T)(1-f2(P_T) : both leptons as fake

	FF	PF	FP	PP estimate
иµеµ	3.675 ± 0.072	5.664 ± 0.344	8.772 ± 0.740	10.67 ± 0.85
$\mu\mu e\tau_h$	21.483 ± 0.303	31.372 ± 2.231	23.431 ± 0.715	33.32 ± 2.40
$\mu\mu\mu\tau_{\rm h}$	27.715 ± 0.691	46.256 ± 3.121	31.175 ± 1.490	49.72 ± 3.90
$\mu\mu\tau_{\rm h}\tau_{\rm h}$	88.551 ± 2.031	114.480 ± 5.453	69.758 ± 3.351	95.69 ± 6.23

High invariant mass

Low Invariant mass

	FF	PF	FP	PP estimate
µµеµ	0.155 ± 0.015	0.334 ± 0.067	0.477 ± 0.136	0.66 ± 0.18
$\mu\mu e\tau_h$	0.393 ± 0.034	0.859 ± 0.283	0.653 ± 0.111	1.12 ± 0.33
$\mu\mu\mu\tau_{\rm h}$	0.834 ± 0.105	0.557 ± 0.168	0.865 ± 0.243	0.59 ± 0.32
$\mu\mu\tau_{\rm h}\tau_{\rm h}$	1.073 ± 0.247		\geq $- $ \setminus	1.073 ± 0.247
			$>$ \setminus \vee	

13

Shape of the reducible background

- Tau candidates have the same electric charge, while the dimuon pair is selected as previously
- To increase the statistical precision the iso criteria on the tau candidates are loosened

Final State	Loosened cuts		
еμ	Iso <2.0, no e-id, Loose PF Muon ID		
$e au_{h}$	e ID 90%, tauMVAraw>-0.9		
$u au_{h}$	Loose PF muon ID, iso<1.0, taurawMVA iso >-0.9		
$ au_{ m h} au_{ m h}$	TauMVAraw>-0.9		

Optimization Cuts

Final State	Invariant mass of four leptons (GeV)
еμ	< 110
$e au_{h,} \mu au_{h}$	< 120
$\tau_{\rm h}^{} \tau_{\rm h}^{}$	< 130

- Signal Efficiency ~100%
 Because the visible invariant mass is expected to peak below the Higgs boson mass due to the presence of neutrinos
- Fake background reduction ~90%

Event Selection – Optimization Cuts

 $m_{\mu\mu}$ > $m_{\tau\tau}$

- High Signal Efficiency→ energy lost by neutrinos in tau decays whereas the reducible background is reduced by a factor 2 in all final states
- The mass difference between the two pairs increases with mass α

Peak above 0 because the mass of dimuon is greater than the of ditau

Control Plots of invariant mass (μμττ)

17

Signal Model for $h \rightarrow \alpha \alpha \rightarrow 2\mu 2\tau$

- Voigt profiles (3 parameters: mean, α (Lorentzian) and σ (Gaussian))
- Dimuon mass resolution 2%

Signal Model for $h \rightarrow \alpha \alpha \rightarrow 2\mu 2\tau$

Signal Shape for any mass of m_α

• Remove a signal sample from the parametrization and compare the functions obtained from the extrapolated parametrization with those obtained from the direct fit

Signal Model for $h \rightarrow \alpha \alpha \rightarrow 4\tau$

- The two reconstructed muons that form the dimuon mass distrubution come from:
 - 1) same pseudoscalar boson \rightarrow wide peak distribution below m_{α}

2) from two different pseudoscalar bosons \rightarrow do not form a resonance and their distribution is rather flat.

- Distributions are parametrized by the sum of a low mass Gaussian and a flatter Bernstein polynomial for the non-resonant combinations.
- Six free parameters: the mean and width of the low mass Gaussian, 3 parameters of Bernstein polynomial, and the ratio between the normalization of the Gaussian and Bernstein components.

Signal Model $h \rightarrow \alpha \alpha \rightarrow 4\tau$

Signal Model for $h \rightarrow \alpha \alpha \rightarrow 4\tau$

After selection, the yield of $h \rightarrow \alpha \alpha \rightarrow 4\tau$ is about 30% of the yield of $h \rightarrow \alpha \alpha \rightarrow 2\mu 2\tau$

The reduction of the ratio after selection is explained by the following:

- Muons are not necessarily of opposite sign \rightarrow lower efficiency
- Muons are softer as they come from tau decays leading to a lower efficiency for the cuts on the P_T of the leptons
- Dimuon mass is not necessarily larger than ditau mass because muons come also from hadronic taus leading to a lower efficiency for the cut on $m_{\mu\mu}$ > $m_{\tau\tau}$
- Dimuon mass is not necessarily less than 62.5 GeV

Signal Shape for every m_{α} sample

Background Parametrization Reducible

3rd degree Bernstein polynomials→ Good fit quality in all the final states

Irreducible

5th degree Bernstein polynomials→ Good fit quality in all the final states

Estimation of uncertainties Physics Objects

- Tracking and Identification of Muons, per single muon: 2%
- 2% is assigned to the yield of MC processes with real electrons in the final state, to account for the uncertainty in the electron isolation and identification efficiency
- Electron isolation and identification efficiency : 2%
- Tau Efficiency ID : 5 % (TauPOG)
- Tau energy scale : 1.2%
- B jet veto is 0.5 % yield uncertainty for signal and irreducible background events

Estimation of uncertainties Background

- $zz \rightarrow 4l : 10\%$ (CMS Measurement)
- Fitting motel for irreducible background is negligible
 - → Irreducible background is generally sub-dominant
 - \rightarrow MC simulations populated enough leading to precise shape description
- Yield uncertainty in reducible background:

Statistical uncertainty in the yield predicted by fake rate method in the signal region

Shape Uncertainty for reducible: Three parameters of the Bernstein functions considered as parametric uncertainties in the fit model → limited impact on the analysis because the statistical uncertainties on the data and background predictions dominate

Expected Limits on $\sigma_{\rm H}/\sigma_{\rm SM} \ge B(H \rightarrow \alpha \alpha \rightarrow 2\mu 2\tau)$

 $\mu\mu\mu\tau_{h}$ best limits because the lepton P_{T} thresholds are lower than $\mu\mu\tau_{h}\tau_{h}$ and $e\tau_{h}$ final states, and because BR is larger than in the mmeµ final state

Results

• The results are interpreted as limits on $B(H \rightarrow \alpha \alpha)$ in the different types of 2HDM+S as a function of tan β

CMS Preliminary 35.9 fb⁻¹ (13 TeV) CMS Preliminary 35.9 fb⁻¹ (13 TeV) 5.0 tanß tanß 4.549 $\frac{\sigma(h)}{\sigma_{SM}} \times B(h-$ 2HDM+S type-1 2HDM+Stype-2 UB 10^{°×} 4.0 4.0 3.5 3.5 5 5 3.0 3.0 95% CL 5 2.5 92% 2.5 2.0 2.0 10 1.5 -1.5 1.0 1.0 0.5 20 30 40 50 60 20 30 40 50 60 m_a (GeV) m_b (GeV) CMS Preliminary 35.9 fb⁻¹ (13 TeV CMS Preliminary 35.9 fb⁻¹ (13 TeV) 5 tanß tanß HDM+S type-3 is the 4 10²] 4.5 2HDM+S type-3 × B(h-×BG most sensitive scenario 41 4.0 (u)0 3.5 3.5 at large $tan\beta$ 5 3.0 5 3.0 러 d 2.5 2 10 2 2.5 108 2.0 2.0 1.5 2HDM+S type-4 1.5 1.0 0.5 1.0 10 10° 60 60 30 40 50 50 m_a (GeV) m_b (GeV)

Conclusion

- A search for the decay of $h \rightarrow \alpha \alpha \rightarrow 2\mu 2\tau$ has been presented
- The reducible background is estimated from the data with the fake rate method and irreducible background is estimated from MC
- Lowest limit on m_{α} =60 GeV at 1.2 x 10⁻⁴
- 2HDM+S type 3 is the most sensitive scenario with large tan β where the couplings to leptons are enhanced over the decays to quarks with BR(h $\rightarrow \alpha \alpha \rightarrow 2\mu 2\tau$) ~ 0.08%
- The analysis current status is APP (HIG 17-0-29)
- Targeting JHEP publication