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Why non-relativistic gravity?

_ Unlike Einstein gravity, Newtonian gravity is not a geometric theory

D non-relativistic gravity in an arbitrary frame?

D Newton-Cartan: geometric formulation of Newtonian gravity; arbitrary frames

_ New physical applications, mainly in condensed matter physics

D Construction of Effective Field Theories, e.g. for the FQHE, chiral superfluids &c.
Hoyos, Son ’12; Son ’13; Geracie, Son, Wu, Wu ’15; Hoyos, Moroz, Son ’14; Moroz, Hoyos ’15

D Universal properties, transport phenomena
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From Eq. (A4) we obtain
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Utilizing Eqs. (A7) and (A12), we obtain

(A15)

which is Eq. (13) of the text. In 6rst order, os is con-
stant, and we therefore have, for a weak 6eld.

we obtain, in an entirely analogous manner
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which —with the notational definitions of Eqs. (7), and
in dyadic notation —is identical to Eq. (15).
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Theory of Thermal Transport Coefficients*
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A simple proof of the usual correlation-function expressions for the thermal transport coeKcients in a re-
sistive medium is given. This proof only requires the assumption that the phenomenological equations in the
usual form exist. It is a "mechanical" derivation in the same sense that Kubo's derivation of the expression
for the electrical conductivity is. That is, a purely Hamiltonian formalism with external 6elds is used, and
one never has to make any statements about the nature or existence of a local equilibrium distribution func-
tion, or how fluctuations regress. For completeness the analogous formulas for the viscosity coeKcients and
the heat conductivity of a simple Quid are given.

I. INTRODUCTION

'N recent years there has been considerable interest in
- - certain general formulas for transport coeKcients.
These formulas express the transport coefficients in
terms of certain correlation functions and are in
principle more general than the use of any transport
equation. Such general expressions seem to have been
first given by Green' for transport in Quids. For the
electrical transport coeKcients the analogous formulas
seem first to have been published by Kubo. ' Since the

*Work supported in part by the U. S. OfBce of Naval Research.' M. S. Green, J. Chem. Phys. 20, 1281 (1952};22, 398 (1954).
From a quite diGerent point of vie~, equivalent formulas were
obtained by H. Mori, Phys. Rev. 112, 1829 (1958);' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957};R. Kubo, M.
Yokota, and S. Nakajima, ibid. , p. 1203.

latter's formula for the electrical conductivity tensor is
perhaps the most widely used of these formulas, they
are often known as "Kubo" formulas.

In obtaining such formulas, two diferent approaches
have been used. For the electrical conductivity problem
one can simply study the linear response of the system
to an external electrical field and calculate the currents
that Bow. This leads unambiguously to Kubo's formula
for the electrical conductivity tensor and seems very
hard to object to. Such derivations we will call
"mechanical" because they arise from studying a
problem with a well-defined Hamiltonian (that of
system plus interaction with external field). On the
other hand, to obtain, say, the thermal conductivity,
there exists no mechanical formulation, since there is no
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Equation (1.31) may only be satisfied if for arbitrary &if The entire analysis of Sec. II is still valid, leading to
(1.13), where F is now given by

where a is some constant independent. of q. p(r) q (r)dr+ J't(r)tp(r)dr (2.2)

h(r)p(r, f)dr,

where h(r) is the Hamiltonian density of the unper-
turbed system. Clearly a varying f will give rise to a
varying energy density, which, in turn, will correspond
to a varying temperature. We shall see this in more
detail below.

Turning on simultaneously a &p and a f, which vary
as e", we again obtain a total Hamiltonian of the form
(1.2), except that now F is given by

F= p(r) q (r)dr+ h(r)P(r)dr. (2.1)

7 These eGects are actually extremely small, far too small to be
observed in any ordinary experiment. They were Grst considered
by A. Einstein, Ann. Physiit 38, 443 (1912).See also R. C. Tolman,
Phys. Rev. 35, 904 (1930) and R. C. Tolman and P. Ehrenfest,
ibid 36, 1/91 (1930.). (I am indebted to Professor G. Uhlenbeck for
calling these interesting references to my attention. ) Although the
e6'ect is very small, in practice we are only interested in questions
of principle, and an arbitrarily small e8ect is just as good as a
large one. In fact, if the gravitational Geld didn't exist, one could
invent one for the purposes of this paper.

~«'v'c/«'0v'/D»' v'9«'r/v' ~

(ps)= —«s s (1.34)

Now since (ps) is the charge density for a system in
equilibrium in a static external potential with Fourier
coefficient p~, it may be calcu1ated by equilibrium
statistical mechanics. Therefore, u is an equilibrium
property of the system. A straightforward calculation,
which is given in Appendix A, yields

a= e'/(BP/Bn)r,

where p, is the chemical potential regarded as a function
of the temperature and equilibrium particle density n.

Combining (1.35) and (1.33) we get the usual Einstein
relationship, which, combined with (1.30), gives the
"Kubo" formula for the self-diffusion tensor D ~.

Although none of the results of this section are new,
the method used to derive them may be taken over with

only minor modifications to obtain the thermal trans-
port coefFicients.

III. CALCULATION OF THE THERMAL
TRANSPORT COEFFICIENTS

Just as the space- and time-varying external electric
potential produced electric currents a,nd density varia-
tions, so a varying gravitational field will produce, in

principle, ~ energy Qows and temperature fluctuations.
The reason for this is that an energy density h(r) be-
haves as if it had a mass density h(r)/c', as far as its
interaction with a gravitation field goes. Calling the
gravitational potential —cQ(r, t), we have an inter-
action term in the Hamiltonian of the form

Again, as in (1.15) we may write

A(r)+V j~(r) =0, (2 3)

where je(r) is the energy-current-density operator for
the unperturbed system. For a simple system of inter-
acting particles we may take

where

h(r) = -,'Q;(/s;8/+ 8;l's,),

3;=S(r—r,),
/s;= (p, /2rN)+ V,+-,' P I;;.,

(2.4)

V; being the interaction energy between the jth
particle and an external fixed field, I;; the velocity-
independent interaction between the jth and j'th
particles. In this case j e(r) may be written

j. (r) =-,'Z(I/j;. (r)yg;. (r)h, )

+(1/8m)p' $(p;.+p; .)x;; &F;; &8;
7 tl

+b,x;; &F;; (p; +p;.)],
j;.(r) = (1/2m) (p;.8;+8;p/. ),

F&pr = r)$/p/B'x/

(2.5)

(These expressions make an error of the order qa, where

u is the range of the interparticle potential and g the
propagation vector of the disturbance in the system. ')

Now j (r) and js(r) are not the total current densities,
the expressions for the current densities being modified

by the interaction with the external fields. Call the time-

dependent average charge density (p(r; t));

(.(', f»=T (."()),
a(p(r; f))/af=TrUapr/af) p(r) j

=Trpri[Hz, p(r) j (2. .6)

Since the total charge is conserved, we may write

iLI~r, p(r)3= —& j'(r) (2 7)

The (j r(r; f)) computed from this equation will

satisfy the equation of continuity. Similarly, if hz(r) is

the total energy density, we have

(hr (r; t')) =Tr(prhr),

8(hr(r; t))/Bt=Tr(pr(i/8r, hr(r) j+(Bhr/'Bf))). (2.8)

Again, by energy conservation, we may write

i[Hr, hr(r)5= —~ jar(r) . (2.9)

This terin represents the energy Qux in the system,

' See H. Mori, Ref. 1, pp. 1838-1839.
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Why non-relativistic gravity?

_ Unlike Einstein gravity, Newtonian gravity is not a geometric theory

D non-relativistic gravity in an arbitrary frame?

D Newton-Cartan: geometric formulation of Newtonian gravity; arbitrary frames

_ New physical applications, mainly in condensed matter physics

D Construction of Effective Field Theories, e.g. for FQHE, chiral superfluids &c.
Hoyos, Son ’12; Son ’13; Geracie, Son, Wu, Wu ’15; Hoyos, Moroz, Son ’14; Moroz, Hoyos ’15

D Universal properties, transport phenomena

_ Newton-Cartan geometry is to Newton what Riemann geometry is to Einstein

D Coupling of non-relativistic field theories to gravity

D Distinguish geometry (background fields, symmetries) vs. gravity (EOMs)



Why torsion?

_ Holography (e.g. Lifshitz)  zero torsion is not allowed in CFT
Christensen, Hartong, Obers, Rollier ’14; Hartong, Kiritsis, Obers ’14-’15

_ To define a non-relativistic energy-momentum tensor, torsion is a key ingredient
Luttinger ’64; Gromov, Abanov ’14

_ Numerous applications of torsional non-relativistic gravity in condensed matter
Gromov, Abanov ’14; Geracie, Golkar, Roberts ’14; Geracie, Prabhu, Roberts ’16; & c.



Why supersymmetry?

_ Non-relativistic supersymmetric field theories on non-trivial backgrounds?

_ Localization  exact partition functions for non-relativistic field theories?

_ But also, what is the supersymmetrization of Newtonian gravity?

To answer such questions, first one has to construct non-relativistic supergravities
see e.g. Andringa, Bergshoeff, Rosseel, Sezgin ’13; Bergshoeff, Rosseel, Zojer ’15; Bergshoeff, Rosseel ’16



Methods, Goals and Overview

_ Construct Newton-Cartan Geometry and Gravity with arbitrary torsion

D Gauging an algebra

D Null-reduction of GR/conformal gravity

D Conformal method

3 NC geometry with arbitrary torsion in any dimension

3 NC gravity with arbitrary torsion in 3D
Bergshoeff, A.Ch., Romano, Rosseel ’17

_ Construct off-shell N = 2 Newton-Cartan supergravity with arbitrary torsion

D Null-reduction of (old-minimal) N = 1 supergravity

D Supersymmetric curved backgrounds? (only hints in this talk...)

3 Off-shell non-relativistic supergravity with arbitrary torsion in 3D
Bergshoeff, A.Ch., Lahnsteiner, Romano, Rosseel; to appear



Newton-Cartan from gauging

Einstein gravity ∼ Gauging of the Poincaré algebra

Newton-Cartan gravity ∼ Gauging of the Bargmann algebra
Andringa, Bergshoeff, Panda, de Roo ’10

Commutation relations

[Jab, Jcd ] = 4δ[a[cJd ]b] , [Jab,Pc ] = −2δc[aPb] ,

[Jab,Gc ] = −2δc[aGb] , [Ga,H] = −Pa , [Ga,Pb] = −δabM .

Transformation Generator Gauge Field Gauge Parameter
Time translations H τµ ζ

Space translations Pa eµa ζa

Spatial rotations Jab ωµ
ab λab

Galilean boosts Ga ωµ
a λa

Central charge M mµ σ



Transformation rules and torsion

The independent fields are {τµ, eµa,mµ} and they transform as 1-forms and as

δτµ = 0 ,

δeµa = λa
beµb + λaτµ ,

δmµ = ∂µσ + λaeµa .

Inverse vielbeins may be defined using a set of projective invertibility relations

eµaeνa = δµν − τµτν , eµaeµb = δa
b , τµτµ = 1 , eµaτµ = 0 , τµeµa = 0 .

For each set of generators, there is an associated curvature. In particular

Rµν(H) = ∂[µτν]  the torsion

τab = eµaeνb∂[µτν]

τ0a = τµeνa∂[µτν]

geometric constraint Newton-Cartan
τ0a 6= 0 , τab 6= 0 arbitrary torsion
τ0a 6= 0 , τab = 0 twistless-torsional
τ0a = 0 , τab = 0 zero torsion



Newton-Cartan equations of motion

_ Rµν(Pa) and Rµν(M) are used to find expressions for ωµab(τ, e,m) & ωµ
a(τ, e,m)

_ The remaining two curvatures are related to the equations of motion for NC

D For zero torsion

τµeνaRµν(Ga) := R0a(Ga) = 0 ...
 ∇2Φ = 0

Rc0
c

b(J) = 0 , Rca
c

b(J) = 0

D For arbitrary torsion, it is much harder to establish such equations... see later



Null-reduction of general relativity
Duval, Burdet, Kunzle, Perrin ’85; Julia, Nicolai ’95

Start with GR in d + 1 dimensions, in the second-order formalism {EM
A,ΩM

AB(E)}.

The spin connection and the curvature are given by the standard expressions

ΩM
BA(E) = 2EN[A∂[MEN]

B] − EN[AEB]PEMC∂NEP
C ,

R̂MN
AB (Ω(E)) = 2∂[M ΩN]

AB − 2Ω[M
ACΩN]C

B .

In addition, the vielbein transforms under g.c.t.s and local Lorentz transformations as:

δEM
A = ζN∂NEM

A + ∂Mζ
NEN

A + λA
BEM

B .

Assume that we have a null Killing vector ξ = ξM∂M for the metric gMN ≡ EM
AEN

BηAB :

LξgMN = 0 and ξ2 = 0 .

We choose adapted coordinates and split indices as M = {µ, υ} and A = {a,+,−}

Notably, this implies that the metric is degenerate (the Killing vector is now ξ = ξυ∂υ):

gυυ = 0



Reduction Ansatz

The suitable Ansatz for the Vielbein and its inverse is cf. Julia, Nicolai ’95

EM
A =

a – +( )
µ eµa τµ −mµ

υ 0 0 1
, EM

A =

µ υ a eµa eµamµ

– τµ τµmµ

+ 0 1

.

Off-shell reduction yields the NC transformations for {eµa, τµ,mµ} along with

Ωµ
ab(E) ≡ ωµab(τ, e,m) = ω̊µ

ab(e, τ,m)−mµτ
ab ,

Ωµ
a+(E) ≡ ωµa(τ, e,m) = ω̊µ

a(e, τ,m) + mµτ0
a .

On-shell, however, one obtains the NC EOMs and τ0a = τab = 0.

Null-reduction of GR: NC geometry with arbitrary torsion, but NC gravity without torsion



Null-reduction of conformal gravity
Bergshoeff, A.Ch., Romano, Rosseel ’17

Motivated by the conformal construction of Poincaré gravity
see the book of Freedman and van Proeyen for all details

Poincaré = Conformal + Scalar + gauge-fixing

The full set of gauge fields is {EM
A,ΩM

AB, bM , fM A}; the independent ones transform as

δEM
A = λA

BEM
B + λDEM

A ,

δbM = ∂MλD + λA
K EMA .

Null-reduction z = 2 Schrödinger gravity with arbitrary torsion; anisotropic scaling:

δDτµ = 2λDτµ ,

δDeµa = λDeµa ,

Equivalent to gauging the Schrödinger algebra (conformal extension of Bargmann)



Torsion revisited

Originally (d+1) λA
K s. Gauge-fixing bυ = 0 fixes λ−K . Fixing (d-1) more, requires

R0a(H) := τµeνa
(
2τµν − 4b[µτν]

) !
= 0 ⇒ ba = −τ0a .

This is a conventional constraint. Zero torsion is not compatible with dilatations...

geometric constraint Schrödinger
τ0a 6= 0 , τab 6= 0 arbitrary torsion
τ0a 6= 0 , τab = 0 twistless-torsional
τ0a = 0 , τab = 0 N/A



Newton-Cartan Gravity with Arbitrary Torsion?
Bergshoeff, A.Ch., Romano, Rosseel ’17; cf. Afshar et al. ’16 for twistless-torsion

Use a non-relativistic version of the conformal construction of relativistic gravity

Scalar CFT with L = 1
2φ∂

µ∂µφ

Coupling to conformal gravity ∂ → Dconf

Gauge-fix φ = 1  L = R

In our (arbitrary torsion) case

_ SFT for two real scalars (one for dilatations, one for central charge trafos):

∂0∂0ϕ−
2
M

(∂0∂aϕ)∂aχ+
1

M2 (∂a∂bϕ)∂aχ∂bχ = 0 .

_ Coupling to Schrödinger gravity ∂ → DSchr

_ Gauge-fixing ϕ = 1 and χ = 0, and restricting to d = 3, leads to a set of EOMs:

R′0a(Ga) + terms(τ0a, τab) = 0 ,

R0b
ba(Ω) = 0 , Rac

cb(Ω) = 0 , Ω = ω̊ + terms(τab) .



Non-relativistic Supergravity

Apply the technique of null-reduction to off-shell (old minimal) N = 1,D = 4 sugra
Bergshoeff, A.Ch., Lahnsteiner, Romano, Rosseel; to appear

The off-shell multiplet comprises the fields {EM
A,ΨM ,AM ,F}

For the bosons, we use the same null-reduction Ansatz as before. For the fermions:

Ψµ = (ψµ− −mµψυ−)⊗ χ+ + (ψµ+ −mµψυ+)⊗ χ− ,
Ψυ = ψυ− ⊗ χ+ + ψυ+ ⊗ χ− .

Nullity of the Killing vector ξ leads to a closed set of constraints:

ξ2 = 0 ⇒ Eυ− = 0 ⇒ ψυ+ = 0 ⇒ εabτab = 2
√

2 ψ̄υ−ψυ− + 12Aυ

The reduced, non-relativistic off-shell supergravity multiplet contains the fields

{τµ, eµa,mµ,Aµ,Aυ,F , ψµ±, ψυ−}

Taking into account the constraint, the supersymmetry algebra closes, as it should



Non-relativistic supersymmetric curved backgrounds?

Relativistic: starting from off-shell sugra, rigid susy theories on curved backgrounds
Pestun ’07; Festuccia, Seiberg ’11; & c.

_ Classified by studying Killing spinor equations in curved space

Non-relativistic (to date): studied only for torsionless off-shell Newton-Cartan sugra
Knodel, Lisbao, Liu ’16

_ “Small” off-shell multiplet {τµ, eµa,mµ, ψµ±,S}

_ Killing spinor equations  solutions exist, but on flat space

In order to ameliorate this, the full off-shell multiplet (allowing torsion) is necessary
Bergshoeff, A.Ch., Lahnsteiner, Romano, Rosseel; work in progress



Epilogue

_ New developments in non-relativistic (super)gravity, in many different directions

3 We constructed Newton-Cartan (super)gravity with arbitrary torsion in 3D

_ Systematic methods, null-reduction and conformal construction

_ Curved supersymmetric backgrounds might exist, from off-shell torsional NC sugra

_ A host of potential applications

D Non-relativistic holography

D Localization

D Condensed matter systems, EFTs

D D = 4?


