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Constraints from gravity waves

General Relativity

GR is based on two important principles:
Mach’s principle The presence of matter curves the geometry of spacetime
Equivalence principle Locally a free-falling observer and an inertial
observer are indistinguishable

This means:
-Gravity is a local condition of spacetime
-Gravity sees all (including vacuum energy!)
-In Newtonnian gravity mI and mG happen to be the same, in GR it is a
founding principle
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Constraints from gravity waves

GR is a unique theory

Theoretical consistency: In 4 dimensions, consider
L = L(M, g ,∇g ,∇∇g). Then Lovelock’s theorem in D = 4 states that
GR with cosmological constant is the unique metric theory emerging from,

S(4) =
∫
M

d4x
√
−g (4) [R − 2Λ]

giving,
Equations of motion of 2nd-order (Ostrogradski no-go theorem
1850!)
given by a symmetric two-tensor, Gµν + Λgµν
and admitting Bianchi identities.

Under these hypotheses GR is the unique massless-tensorial 4 dimensional
theory of gravity!
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Constraints from gravity waves

Observational data

Experimental consistency:
-Excellent agreement with solar system tests and strong gravity tests on binary
pulsars
-Observational breakthrough GW170817: Non local, 40Mpc and strong gravity
test from binary neutron stars. cT = 1± 10−15

Time delay of light Planetary tajectories

Neutron star binary
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Constraints from gravity waves

Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...
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Constraints from gravity waves

Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...

If we assume only ordinary sources of matter (DM included) there is
disagreement between local, astrophysical and cosmological data.
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Constraints from gravity waves

Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Typical mass scale for neutrinos...
Theoretically the cosmological constant should be huge.
What if GR is modified at astrophysical or cosmological scales.
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Constraints from gravity waves

Modified Gravity : General issues

Since GR is unique we need to introduce new and genuine gravitational degrees
of freedom!
They generically must not lead to higher derivative equations of motion.
Additional degrees of freedom can lead to ghosts (Ostrogradski theorem 1850
[Woodard 2006]). Since [Gleyzes et al] we know that higher derivative EOM do not always
lead to ghosts. What is essential is the number of propagating dof.
Matter does not directly couple to novel gravity degrees of freedom. Matter sees
only the metric and evolves in metric geodesics. As such EEP is preserved and
space-time can be put locally in an inertial frame.
Novel degrees of freedom need to be screened from local gravity experiments.
Need a well defined GR local limit.
Exact solutions essential in modified gravity in order to understand strong
gravity regimes and novel characteristics. Need to deal with no hair paradigm,
absence of Birkhoff theorem etc.
A modified gravity theory could tell us something about the cosmological
constant problem and in particular how to screen an a priori enormous
cosmological constant. Self tuning and self acceleration.
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Constraints from gravity waves

Scalar-tensor theories

are the simplest modification of gravity with one additional degree of
freedom
Admit a uniqueness theorem due to Horndeski 1973 and extended to
DHOST theories [Langlois et.al] [Crisostomi et.al.]

contain or are limits of other modified gravity theories.
Include terms that can screen classically a big cosmological constant or
give self accelerating solutions. Need a non trivial scalar field.
Have non trivial hairy black hole solutions even around non trivial self
accelerating vacua
New: Theories are strongly constrained from gravity waves.
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Jordan-Brans-Dicke theory [Sotiriou 2014]

Simplest scalar tensor theory

SBD =
1

16πG

∫
d4x
√
−g
(
ϕR −

ω0
ϕ
∇µϕ∇µϕ−m2(ϕ− ϕ0)2

)
+ Sm(gµν , ψ)

ω0 Brans Dicke coupling parameter fixing scalar strength
ϕ = ϕ0 constant gives GR black hole solutions (with a cosmological constant)
but spherically symmetric solutions are not unique (and not GR)!
For spherical symmetry we find,

γ ≡
hij |i=j

h00
=

2ω0 + 3− exp
[
−
√

2ϕ0
2ω0+3mr

]
2ω0 + 3 + exp

[
−
√

2ϕ0
2ω0+3mr

]
where γ = 1 + (2.1± 2.3)× 10−5 from local tests.
ω0 > 40000 in the absence of potential.
Need a more complex version in order to screen the scalar mode locally and to
obtain hairy black holes.→ Higher order dervative theories.
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Jordan versus Einstein frame

Jordan frame is the physical frame. Matter couples only to metric and the weak
equivalence principle is satisfied.

SJordan =
1

16πG

∫
d4x
√
−g̃
(
ϕR̃ −

ω(ϕ)
ϕ
∇̃µϕ∇̃µϕ− V (ϕ)

)
+ Sm(g̃µν , ψ)

Consider a conformal transformation: g̃ab = Ω2(x) gab :∫
d4x
√
−g R =

∫
d4x
√
−g̃ (R̃ Ω2 + 6∇̃aΩ∇̃aΩ), Φ = Φ(ϕ; Ω)

and the action transforms into

SEinstein =
1

16πG

∫
d4x
√
−g (R −∇µΦ∇µΦ− U(Φ)) + Sm(gµν ,Φ, ψ)

The action is GR like, but,
Matter couples to metric and scalar!
Non physical frame or Einstein frame. Matter in free-fall does not follow gµν
geodesics!
Frames are equivalent mathematically and physically as long as we know how
matter couples to the metric.
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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
In fact same action as covariant Galileons [Deffayet, Esposito-Farese, Vikman].
Galileons are scalars with Galilean symmetry for flat spacetime.
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2

Action is unique modulo integration by parts.
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Constraints from gravity waves

Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Horndeski theory admits self accelerating vacua with a non trivial scalar field in
de Sitter spacetime. A subset of Horndeski theory self tunes the cosmological
constant.
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Constraints from gravity waves

Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(X),
L3 = −G3(X)�φ,

L4 = G4(X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
Horndeski theory includes Shift symmetric theories where Gi ’s depend only on X
and φ→ φ+ c.
Associated with the symmetry there is a Noether current, Jµ which is conserved
∇µJµ = 0.
Presence of this symmetry permits a very general no hair argument
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Constraints from gravity waves

Black holes have no hair [recent review Herdeiro and Radu 2015]

During gravitational collapse...
Black holes eat or expel surrounding matter
their stationary phase is characterized by a limited number of charges
and no details
black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding
degrees of freedom lead to singular solutions...
For example in vanilla scalar-tensor theories black hole solutions are GR black holes
with constant scalar.

Warning : beyond GR Birkhoff’s theorem is not valid.
Spherical symmetry thus does not guarantee staticity.
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Constraints from gravity waves

Scalar-tensor theories and black holes

In scalar tensor theories "regular" black hole solutions are GR black holes with a
constant scalar field
Is it possible to have non-trivial and regular scalar-tensor black holes for an
asymptotically flat or Λ > 0 space-time?

We will consider:

Higher order scalar tensor theory
Translation symmetry for the scalar field
A scalar field that does not have the same symmetries as the
spacetime metric
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General solution for a G4 = 1 + βX [Babichev, Charmousis ’13]

Consider, L = R − η(∂φ)2 + βGµν∂µφ∂νφ− 2Λ For static and spherically symmetric
spacetime, ds2 = −h(r)dt2 + dr2

f (r) + r2dΩ2,

The general solution of theory L for static and spherically symmetric metric and
φ = φ(t, r) is given as a solution to the following third order algebraic equation with
respect to

√
k(r):

(qβ)2
(
1 + r2

2β

)2
−
(
2 + (1− 2βΛ) r2

2β

)
k(r) + C0k3/2(r) = 0

All metric and scalar functions given with respect to k and φ = qt + ψ(r):

h(r) = −
µ

r
+

1
r

∫
k(r)

β + ηr2
dr , f =

(β + ηr2)h
β(rh)′

ψ′ = ±
√
r

h(β + ηr2)

(
q2β(β + ηr2)h′ −

η + βΛ
2

(h2r2)′
)1/2

.
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Constraints from gravity waves

Self tuning de Sitter black hole

Solution reads k(r) = (β+ηr2)2
β

with q2 = (ζη + βΛ)/(βη) and C0 = (ζη − βΛ)
√
β/η

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
... q2β(β + ηr2)2 −

(
2ζβ + (ζη − βΛ) r2

)
k + C0k3/2 = 0

f = h = 1− µ
r + η

3β r
2 de Sitter Schwarzschild!

ψ′ = ± q
h
√
1− h and φ(t, r) = q t + ψ(r)

The effective cosmological constant is not the vacuum cosmological constant. In
fact,
Self tuning relation : q2η = Λ− Λeff > 0
Hence for any Λ > Λeff fixes q, integration constant.
where Λeff = − η

β
is fixed by effective theory.

Solution hides vacuum cosmological constant leaving a smaller effective
cosmological constant [Gubitosi, Linder]
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Constraints from gravity waves

Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2

Action is unique modulo integration by parts.
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Constraints from gravity waves

Going beyond Horndeski [Gleyzes et.al], [Zumalacarregui et.al],[Deffayet et.al], [Langlois et.al],
[Crisostomi et.al]

What is the most general scalar-tensor theory with three propagating degrees of
freedom?
It is beyond Horndeski but not quite DHOST yet...

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5) ,

where

L2 = G2(φ,X), L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]

+ F4(φ,X)εµνρσ εµ
′ν′ρ′σφµφµ′φνν′φρρ′ ,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

+ F5(φ,X)εµνρσεµ
′ν′ρ′σ′φµφµ′φνν′φρρ′φσσ′

where XG5,XF4 = 3F5
[
G4 − 2XG4,X − (X/2)G5,φ

]
. Beyond Horndeski acquires one

extra function. BH has similar SA and ST solutions.
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Constraints from gravity waves

Conformal and disformal relations [Bellido, Zumalacarregui]

How are theories mapped under conformal and disformal transformations?

gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ

Horndeski theory has G2,G3,G4,G5 free functions.
For C(φ) and D(φ) we remain within Horndeski.
However if we take a disformal D(X) we jump to
Beyond Horndeski (one more free function)
Take a conformal C(X) and jump to
DHOST Type I (one more free function) [Langlois, Noui], [Crisostomi, Koyama]

In other words DHOST type I are all related to some Horndeski theory. Remaining
DHOST theories are pathological [Langlois, Noui, Vernizzi]

Most general acceptable scalar tensor theories are related to Horndeski theory via a
disformal and conformal transformation.
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Constraints from gravity waves

GW170817 constraints on scalar tensor theories [Creminelli, Vernizzi],
[Ezquiaga, Zumalacarregui]

The combined observation of a gravity wave signal from a binary neutron star
and its GRB counterpart constraints cT = 1 to a 10−15 accuracy.
For dark energy the scalar field (ST or SA) is non trivial at such distance scales
(40Mpc) and generically mixes with the tensor metric perturbations modifying
the light cone for gravity waves.
For a dark energy scalar field from Horndeski the surviving theory has free
G2(φ,X),G3(φ,X), G4(φ) and G5 = 0.
For beyond Horndeski we have G5 = 0,F5 = 0, 2G4,X + XF4 = 0 and theory,

LcT =1 = G2(φ,X) + G3(φ,X)�φ+ B4(φ,X) (4)R

−
4
X
B4,X (φ,X)(φµφνφµν�φ− φµφµνφλφλν) ,

For DHOST we just make a conformal transformation of the above,
G2(φ,X)G3(φ,X),B4(φ,X),C(φ,X)
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Galileons/Horndeski [Horndeski 1973]
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G3 = X −→ "DGP" term, (∇φ)2�φ
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Constraints from gravity waves

Physical and disformed frames

Most general scalar tensor theory with cT = 1 minimally coupled to matter
parametrized by G2,G3,B4,C

LcT =1 = G2 + G3�φ+ B4C (4)R −
4B4,XC

X
φµφνφµν�φ

+
(4B4,XC

X
+

6B4C,X 2

C
+ 8C,XB4,X

)
φµφµνφλφ

λν

+
8C,XB4,X

X
(φµφµνφν)2 .

Horndeski is related via a transformation
gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ

to the LcT =1 for given C and D.
One can start with a cT 6= 1 Horndeski theory and map it to a DHOST cT = 1
theory for a specific function D.
The former is what we could have called the Einstein → Horndeski frame
respective to the latter, the Jordan frame...
except that the metric is disformed in the procedure...
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Constraints from gravity waves

The physical frame and the disformed solution [Babichev, CC, GEFarèse,

Lehébel]

The theory

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
,

is excluded or it is not the physical frame.
Solution: f = h = 1− µ

r + η
3β r

2, φ = qt ± q
h
√
1− h with Λeff = −ζη/β.

The physical frame is :

g̃µν = gµν −
β

ζ + β
2 ϕ

2
λ

ϕµϕν .

Indeed the g̃µν frame is a beyond Horndeski theory with cT = 1 for a
cosmological background.
The disformed metric is a black hole
we have exactly cgrav = 1 for a highly curved background!
the solution is kinetically stable for a specific range of parameters.
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Constraints from gravity waves

Conclusions

Modifying GR is a difficult task but with countable possibilities.
Even more so after the GW experiments. :)))
Scalar tensor theories are parametrized by 4 free functions which we
hope will be further constrained.
Numerous spherically symmetric solutions known. Black holes,
neutron stars. One has to adjust them to acceptable theories. One
has to study GW-compatible theories independently.
Self tuning vacua and black holes can be found with cgrav = 1.
Exact solutions are important to understand the MG theory and find
novel effects. Are there solutions free of singularities? What of
rotating hairy black holes and Neutron stars?

C. Charmousis Hairy black holes and gravity wave constraints



Scalar tensor: From BD to Horndenski...
Black holes and no hair

Constraints from gravity waves

Conclusions

Modifying GR is a difficult task but with countable possibilities.
Even more so after the GW experiments. :)))
Scalar tensor theories are parametrized by 4 free functions which we
hope will be further constrained.
Numerous spherically symmetric solutions known. Black holes,
neutron stars. One has to adjust them to acceptable theories. One
has to study GW-compatible theories independently.
Self tuning vacua and black holes can be found with cgrav = 1.
Exact solutions are important to understand the MG theory and find
novel effects. Are there solutions free of singularities? What of
rotating hairy black holes and Neutron stars?

C. Charmousis Hairy black holes and gravity wave constraints



Scalar tensor: From BD to Horndenski...
Black holes and no hair

Constraints from gravity waves

Conclusions

Modifying GR is a difficult task but with countable possibilities.
Even more so after the GW experiments. :)))
Scalar tensor theories are parametrized by 4 free functions which we
hope will be further constrained.
Numerous spherically symmetric solutions known. Black holes,
neutron stars. One has to adjust them to acceptable theories. One
has to study GW-compatible theories independently.
Self tuning vacua and black holes can be found with cgrav = 1.
Exact solutions are important to understand the MG theory and find
novel effects. Are there solutions free of singularities? What of
rotating hairy black holes and Neutron stars?

C. Charmousis Hairy black holes and gravity wave constraints



Scalar tensor: From BD to Horndenski...
Black holes and no hair

Constraints from gravity waves

Conclusions

Modifying GR is a difficult task but with countable possibilities.
Even more so after the GW experiments. :)))
Scalar tensor theories are parametrized by 4 free functions which we
hope will be further constrained.
Numerous spherically symmetric solutions known. Black holes,
neutron stars. One has to adjust them to acceptable theories. One
has to study GW-compatible theories independently.
Self tuning vacua and black holes can be found with cgrav = 1.
Exact solutions are important to understand the MG theory and find
novel effects. Are there solutions free of singularities? What of
rotating hairy black holes and Neutron stars?

C. Charmousis Hairy black holes and gravity wave constraints


	Scalar tensor: From BD to Horndenski...
	Black holes and no hair
	Constraints from gravity waves

