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Black Holes in General Relativity

Black Holes in General Relativity

Black holes in General Relativity may be described only by three physical
quantities: Mass, E/M charge and Angular Momentum.

Black holes are very special objects: Two stars with the same mass are, in
general, very different, but two black holes with the same characteristics
(M , Q and J) will be identical.

No hair theorems: Uniqueness theorems which state that in General Relativity
only four possible solutions for black holes may exist.
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No-Scalar Hair Theorem

No-Scalar Hair Theorem

Adding new matter/energy forms in the theory could lead to new Black holes
solutions.

The simplest matter form is a Scalar field coupled to the gravitational field:

S =
∫
d4x
√
−g
[
R− 1

2∇µφ∇
µφ− V (φ)

]
.

Assumptions:

Asymptotically flatness,
The scalar field has the same symmetries with the spacetime,
Minimal coupling.

Under these assumptions black holes with scalar hair could not exist 1.

1J. D. Bekenstein, Phys. Rev. Lett. 28 (1972) 452
J. D. Bekenstein, Phys. Rev. D 51 (1995) no.12 R6608
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The Einstein Scalar Gauss-Bonnet Theory

The Horndenski Theory

The more general scalar-tensor theory in four dimensions with second order
equations of motion:

S =
∫
d4x
√
−g [L2 + L3 + L4 + L5]

with:

L2 =G2(φ,X),

L3 =G3(φ,X)∇2 φ,

L4 =G4(φ,X)R+G4,X
[
(∇2φ)2 − (∇µ∇ν φ)2]

L5 =G5(φ,X)Gµν∇µ∇νφ−
1
6G5,X

[
(∇2φ)3 − 3(∇2φ)(∇µ∇ν φ)2 + 2(∇µ∇ν φ)3]

X =1
2∇µφ∇

µφ, and Gi,X = ∂Gi
∂X

.
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The Einstein Scalar Gauss-Bonnet Theory

The Einstein Scalar Gauss-Bonnet Theory

If we make the choices:

G2 =−X + 8f (4)X2(3− lnX),

G3 =− 4f (3)X(7− 3 lnX),

G4 =1 + 4f̈X(7− lnX),

G5 =− 4f lnX,

we get the Einstein Scalar Gauss-Bonnet Theory:

S =
∫
d4x
√
−g
[
R− 1

2∇µφ∇
µφ+ f(φ)R2

GB

]
,

where:

R2
GB = RµνρσR

µνρσ − 4RµνRµν + R2.
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The Einstein Scalar Gauss-Bonnet Theory

The equations of motion are:

Rµν −
1
2gµνR = Tµν ,

∇2φ+ d f(φ)
dφ

R2
GB = 0,

where:

Tµν = −1
4gµν ∇ρφ∇

ρφ+ 1
2∇µφ∇νφ+ 1

2 (gρµgλν + gλµgρν) ηκλαβ R̃ργαβ ∇γ∇κf(φ),

R̃µνκλ = ηµνρσ Rρσκλ,

ηµνρσ =
√
−gεµνρσ.
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The Einstein Scalar Gauss-Bonnet Theory

We assume a spherically symmetric form for the line-element:

ds2 = −eA(r)dt2 + eB(r)dr2 + r2 (dθ2 + dϕ2 sin2(θ)
)
,

The (rr) equation can be solved for eB :

eB =
−β ±

√
β2 − 4γ

2 , and B′ = − γ′ + β′eB

2e2B + βeB
,

with

β = r2φ′2

4 − (2ḟφ′ + r)A′ − 1, γ = 6ḟφ′A′.

If we replace the above relations in the field equations, the (t, t) and (θ, θ) equations
reduce to:

A′′ = g(r;φ′, A′, ḟ , f̈)

φ′′ =h(r;φ′, A′, ḟ , f̈)
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The Einstein Scalar Gauss-Bonnet Theory

Asymptotic Solutions at the horizon

Assuming that eB →∞ at the horizon, we find that the solutions take the form:

eA(r) = a0(r − rh) + ..., e−B(r) = b0(r − rh) + ...,

φ (r) = φh + φ′h(r − rh) + ...,

the regularity condition for the scalar field demands that:

φ′h = rh

4ḟh

−1±

√
1−

96ḟ2
h

r4
h


The above solutions will serve as boundary conditions for our numerical
integration.
From the condition for the derivative we get a constraint for the radius and thus
the mass of the black hole:

r4
h > 96 ḟ2

h
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The Einstein Scalar Gauss-Bonnet Theory

Asymptotic Solutions at Infinity

In the limit r →∞ we demand that the space-time is flat and the scalar field
assumes a constant value. We find:

eA(r) =1− 2M
r

+ MD2

12r3 +O
(
1/r4) , eB(r) = 1 + 2M

r
+ 16M2 −D2

4r2 +O
(
1/r3) ,

φ (r) = φ∞ + D

r
+ MD

r2 +O
(
1/r3) .

The exact form of the coupling function does not enter in the expansions earlier
than the order O(1/r4).

The No-Scalar Hair theorem may be evaded and the two asymptotic solutions may
be smoothly connected assuming that near the horizon2:

ḟhφ
′
h < 0, and ∂r(ḟφ′)|rh > 0.

2P. Kanti talk.
G. Antoniou, A. B. and P. Kanti, arXiv:1711.03390 [hep-th], to appear in Phys. Rev. Lett.
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Numerical Solutions

Numerical Solutions

The system of field equations can not be solved analytically.

In order to get exact solutions, valid over the entire radial domain, we use numerical
integration methods.

Our integration starts at a distance very close to the horizon of the black hole
r ≈ rh +O(10−5)

For simplicity we set rh = 1.

We use as boundary conditions the asymptotic solutions near the horizon
together with the condition for the φ′h

The integration proceeds towards large values of the radial coordinate until the
form of the derived solution matches the asymptotic solutions at infinity.

Known Numerical Solutions:
P. Kanti et al., Phys. Rev. D 54 (1996) 5049 (for exponential coupling)

T.P. Sotiriou and S.Y. Zhou, Phys. Rev. D 90, (2014) 124063 (for linear coupling)
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Numerical Solutions

Solutions for f(φ) = αe−φ

We reproduce the old results by P.Kanti et al. (1996)
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The behavior of the solutions for the scalar field, near the horizon, is dictated by the constraint:
ḟhφ

′
h < 0.
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Numerical Solutions

Solutions and Physical Characteristics for f(φ) = α/φ
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Numerical Solutions

Entropy ratios for more coupling functions
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For large values of the φh there is always a mass range in which the entropy ratio is
above unity.

We expect the solutions with higher entropy than the Schwarzschild solution to be
thermodynamically stable.

for more informations about the quadratic and the exponential coupling function:
H.O.Silva et al. arXiv:1711.02080 [gr-qc].
D. D. Doneva and S. S. Yazadjiev, arXiv:1711.01187 [gr-qc].
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Conclusions

Conclusions

Regular, asymptotically flat black hole solutions were found for a large number
of choices for the coupling function.

The profile for the scalar field, in all of the cases considered, was found to be
regular over the entire radial domain.

The scalar charge D was determined in each case, and its dependence on M was
studied

In all cases the scalar charge is an M -dependent quantity, and therefore our
solutions have a non-trivial scalar field but with a “secondary” hair.

In the large-mass limit, the horizon area and the entropy of all black-hole
solutions approached the Schwarzschild value.

The entropy ratio Sh/SSch may provide hints for the stability of our solutions.
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Thank You!
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In the cosmological Friedmann-
Robertson-Walker (FRW) background
the propagation speed of the gravitational
waves in the Horndeski theory is:

c2
gw =

G4 −X
(
φ̈ G5,X +G′5

)
G4 − 2XG4,X −X

(
Hφ̇G5,X −G′5

)
Using the above relation for the Scalar
Gauss bonnet theory we find:

cgw 6= c,

This result is valid for cosmological
solutions with time-dependent scalar field.

The GW170817 and GRB 170817A signals
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