Study of the Differential Cross Section for the Production of a Top-Antitop Quark Pair with the CMS detector

George Bakas For the NTUA CMS Group

Contents

- Top quark
- CMS Experiment
- Boosted Jets
- Analysis
- Overview

Top Quark

- Mass : 172.44 \pm 0.13 $^{GeV}/_{c^2}$
- Top Quark decay
 - W^+ + b ($\bar{t} \rightarrow W^-$ + \bar{b})
- Top pair production
 - $\circ \quad q + \overline{q} \to t + \overline{t}$
 - $\circ \ g+g \to t+\bar{t}$

t

 \overline{t}

000000

(b)

Top AntiTop system decay

- 1. $t\bar{t} \rightarrow W^+ b W^- \bar{b} \rightarrow q\bar{q}b q'' \bar{b}\bar{q}$ " (45.7%) (hadronic)
- 2. $t\bar{t} \rightarrow W^+ bW^- \bar{b} \rightarrow q\bar{q}' bl^- \bar{\nu}_l \bar{b} + l^+ \nu_l bq'' \bar{q}''' \bar{b}$ (43.8%) (semileptonic)
- 3. $t\bar{t} \rightarrow W^+ b W^- \bar{b} \rightarrow l^+ \nu_l b \, l'^- \bar{\nu'} \bar{b}$ (10.5%) (dileptonic)

Boosted Jet

- Boosted jets are jets with high p_T (~400GeV)
- Aim is the reconstruction of two big jets that contain decay products of the top-antitop quark decay
- Why Boosted Jets?
 - Single "fat" jet: No combinatorial background
 - At high p_T^{top} the hadronic decay mode is easier to reconstruct than the leptonic
 - At high p_T where the theory is less precise \rightarrow boosted jets
- In order to identify boosted jets
 - use of sophisticated reconstruction techniques to identify the substructure within the "fat" jet
 - SoftDrop Technique

Compact Muon Solenoid Experiment

CMS is a general purpose detector and its goal is to investigate a wide range of physics

Analysis

Calculation of the ttbar differential cross section using the Unfolding method

- Variable Levels
 - Parton Level: where collision occurs
 - Particle Level: Hadronization
 - Reconstructed Level: Data received from the detectors
- Variables that will be studied
 - Top P_T : Transverse momentum of the jet
 - Mass $t\bar{t}$ system

Trigger

- Level 1 Trigger
 - Scalar Sum of the Level 1 Jet $p_T(H_T) > 175$ GeV
- High Level Trigger
 - Aims to capture decay products of boosted top pair
 - $^\circ~p_{T,1}\!>$ 280 GeV and $p_{T,2}\!>\!200$ GeV
 - Jet Mass > 30GeV
 - b tagging @ HLT

Trigger Efficiency using HLT_Mu50 as reference trigger

Selection

- Reco Cuts
 - Number of jets > 1
 - Jet P_T at reco level > 400 GeV
 - Leading and Subleading jets are b-tagged
 - Passes signal trigger
 - Multivariate analysis parameter (mva¹) > 0.9
 - Mass leading, subleading jets [140, 200] GeV
- Parton Cuts
 - Jet P_T at parton level > 400 GeV
- Particle Cuts
 - Number of Jets > 1
 - Jet P_T at particle level > 400 GeV
 - Multivariate analysis parameter > 0.9
 - Mass of Jet in particle Level [140,200] GeV

¹MVA: Neural Network

- Input to NN→ jet substructure properties
- Aim is the identification of boosted top-antitop pair
- mva > 0.9 clear signal over bkg

Fiducial Cross Section $S(x) = D(x) - N_{bkg} B(x)$

- S(x) = signal
- D(x) = data
- \circ N_{bkg} = fitted bkg yield extended selection
- B(x) = bkg template taken from 0-btag sample
- The red fit is used to calculate the N_{bkg}

Unfolding

Unfolding is a process that gives solution to the inverse problem

 $y = Ax \Rightarrow x = A^{-1}y + e \rightarrow finding x$

- From measured distribution go to true distribution
- Best matching x is found by minimizing the $L_1 + L_2$ function where
 - The L₁ is the least square minimization function
 - $L_2 \sim tau^2$ defines the regularization, where tau gives the strength of the regularization
- Falling spectrum
 - Migration effects between the bins
 - \circ Use of extrapolation factor (=1/efficiency) to take into account the migration
- Extrapolation from Reconstructed level to Parton and Particle Phase Space

Response Matrices

jetPt and ptTopParton (parton)

Differential Cross Section

Fiducial Cross Section

$$\circ \quad \frac{dN}{dx} = \frac{S(x)}{L\Delta x}$$

Parton Level:

•
$$\left(\frac{dN}{dx}\right)_{parton} = \left(\frac{1}{a(x_{parton})}\right) R^{-1}(x_{parton}, x) \left(\frac{dN}{dx}\right)$$

• $a(x_{parton}) = signal \ efficiency \times acceptance$

Particle Level:

•
$$\left(\frac{dN}{dx}\right)_{parton} = \left(\frac{1}{a_2(x_{particle})}\right) R^{-1}(x_{particle}, x) \left(\frac{1}{a_1(x)}\right) \left(\frac{dN}{dx}\right)$$

• $a_1(x) = signal \ efficiency \ \times \ acceptance$
• $a_2(x_{particle}) = signal \ efficiency \ \times \ acceptance$

Uncertainties

- Focus on theoretical uncertainties
- Experimental
 - Statistics
 - Jet Energy Scale
 - Jet Energy Resolution
 - B tagging efficiency

- Theory Uncertainties
 - Affect the extrapolation factors and the response matrix for the unfolding procedure
 - ISR (Initial State Radiation)
 - FSR (Final State Radiation)
 - CMS Tuned set of MC parameters for Pythia 8

Top P_T Parton Extrapolation

(bp/gev) ND-2 F Parton Extrapolation with Statistical Errors Systematic Errors Theoretical Nominal MC 10⁻³ 10-4 400 600 800 1000 1200 1400 1600

Final Parton Extrapolation with Theoretical Parton

pt Top Parton (GeV)

Mass tt Parton Extrapolation

Top P_T Particle Extrapolation

Mass tt Particle Extrapolation

Final Particle Extrapolation with Theoretical

Conclusions

- We have studied the $t\bar{t}$ production in pp collisions at 13TeV Energy recorded by the CMS detector
- Differential cross sections have been presented at parton and particle levels
- Comparison with theory predictions show consistent shapes but systematically lower cross section in data (this is a known effect, also reported by ATLAS and other CMS measurements)
- Focus on the unfolding of the measured cross sections to the parton and particle levels and investigation of the impact of the theoretical (simulation) uncertainties

Thank you for your attention

Backup Slides

Ratio of Extrapolated vs Theoretical

Mass top-Antitop response matrices

Soft Drop Technique

 Reconstruct the jet mass by removing soft contributions from pileup and collinear emissions

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{cut} \times \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

- \blacktriangleright At CMS the $z_{cut}~=0.1$ and $\beta~=0$
- This means that $\frac{\min(p_{T1}, p_{T2})}{p_{T1}+p_{T2}} > 0.1 \rightarrow$ when the technique goes backwards to "check" the jet, it keeps only the the objects that have a p_T no smaller than 10% of the "central" p_T of the jet
- This happens in order to suppress the contribution from secondary sources

τ_N : N-subjettiness

- > The NN combines the τ_1, τ_2, τ_3 of the two leading jets, where τ_N is the subjetiness and N is the number of prong jets
- Prong jets are the number of jets that determine the substructure of the boosted jet

•
$$\tau_i = \frac{1}{\sum_k p_{TK}R} \sum_k p_{TK} \min(\Delta R_{1K}, \dots \Delta R_{iK})$$
, where $i = 1, 2, 3$

- Normaly $\tau_1 > \tau_2 > \tau_3$
 - $\,\circ\,$ Small $\tau_i\,$ means that the i-jets are more possible to be seen

Closure Tests

Unfolding to Particle Phase Space for several tau

P_t ttbar Parton Extrapolation

P_t ttbar Particle Extrapolation

