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The simple mechanical model of the vibrating string 
has been a source of stunning progress in our 

understanding of the fundamental interactions.

The surprise is even bigger if we realise that we can 
solve the model only on simple flat backgrounds†

 †with very few exceptions

In this talk I shall study the dynamics of strings on more 
complicated spaces and will derive some implications on 

their (perturbative) quantum dynamics 
in the low-energy limit
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THE MODEL

One can show that this metric, together with a 
constant dilaton and vanishing (NS-NS and R-R) 

forms is an exact string background

d s2 =
ØØd z + iflz d y

ØØ2 +d y2 +d x2

The solution of the world-sheet theory seems 
hopeless due to the presence of non Gaussian terms

still …

z 2C , y 2 S1(R)



This solution can be interpreted à la Kaluza-Klein by 
writing the (relevant part of the) metric as

In terms of four-dimensional fields



In polar coordinates

d s2 = dΩ2 +Ω2(d'+fld y)2 +d y2 +d x2

A simple redefinition of the angular coordinate

z = Ω ei'

z0 = Ω ei'0 = Ωei ('+fly)d s2 = dΩ2 +Ω2d'2
0 +d y2 +d x2 = |d z0|2 +d y2 +d x2

… a free (gaussian) theory subject to the identification

(y,'0) ª (y +2ºnR,'0 +2ºnRfl)



These backgrounds are very well known 
and are amenable to an exact CFT description 

Fluxbranes
Freely acting orbifolds

Coordinate dependent compactifications

Scherk-Schwarz reduction

Melvin backgrounds



These backgrounds are very well known 
and are amenable to an exact CFT description 

flR

(for             the angle must be quantised 
as in familiar orbifold compactifications)

z 2 T 2



The partition function for type II superstrings simply reads

with
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One can also study D-branes on this background

A = 1
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This background breaks all (space-time) supersymmetries.
In fact the Riemann (Jacobi) identity implies

Things can be improved if one rotates more than one plane.

which does not vanish.
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In the simple case of two identical (or opposite) rotations

half of the supersymmetries are preserved

flRflR



Actually, for reasons that will be clear in a short-while
I am interested in the following (exact) background

0 1 2 3 4 5 6 7 8 9

| {z }
flR

| {z }
flR

| {z }
C2/ZN

| {z }
Melvin

D5-branes

| {z }
tip of the cone



The annulus partition function is simply (!!) the combination
of branes on (freely-acting) orbifolds
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WHY DID I DO ALL THIS?
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The main motivation comes from the explicit solution of 
Nekrasov of the (non-perturbative) dynamics of N=2 theories

This background lifts the instanton moduli space, leaving 
only a finite number of isolated points as a full set of 

supersymmetric minima of the action. One is thus left to 
compute ratios of determinants near each critical point 
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The ! background of Nekrasov

really looks like a Melvin space  (with one/two independent parameters)

d s2 = A d zd z̄ + gI J
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L xL d z̄

¢

From field theory, the perturbative (one-loop) 
correction to the prepotential reads
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Moreover, Nekrasov and Okounkov observed a puzzling coincidence
in the case of a single parameter background

Note that up to the terms of instanton degree zero the 
function                   coincides with the all-genus free 

energy of the type A topological string on the resolved 
conifold, with      being the Kähler class of the      , and       

the string coupling. 

∞fl(x|Ø;§)

Øx
Øfl

P 1

Alternatively, the perturbative contribution is captured by topological 
amplitudes computing (higher-derivative) F-terms of the form             .Fg W 2g
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Why is this true?
How to refine it to the case of two independent parameters?

can be “easily” computed via the generating functional

generators of 
rotations

angle of 
rotations
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What does it mean?

The insertion of the graviphotons is effectively generating 
the (Melvin/!) background
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a. Can we give a (perturbative) description of the ! background?

b. String corrections to the prepotential on !?

c. Can we gain insight on the refinement of the topologica string?

OUTLOOK
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RADIATIVE CORRECTIONS

We are interested in computing one-loop corrections 
to the gauge coupling on the D5-branes

This has been a very active and fruitful topic in the 
late nineties that has contribute to our understanding 

of string-string dualities



RADIATIVE CORRECTIONS

An elegant way to compute these quantum 
corrections in open strings is to employ 

the background-field method

This extra term only alters the boundary conditions 
and the string model is still exactly solvable

S = S0 +
Z

@ß
døq Fµ∫X µ@øX ∫



The modifications of the annulus amplitude are (essentially) 
in the shifted masses of (charged) open strings

A !A (B) 'A0 +B 2 A2 +B 4 A4 + . . .

Expanding the annulus amplitude for small B

M 2 ! M 2 + (2n +1)|≤|+2≤ß º≤= tan°1(ºqLB)+ tan°1(ºqRB)



Let us see what happens in the case of orbifold 
compactifications on flat space-time (with N=2 susy)
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Let us see what happens in the case of orbifold 
compactifications on flat space-time (with N=2 susy)
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drastic simplifications of the final result
(string states decouple — BPS saturated amplitude)

A2 '
Z1

0

d t
t

X

m
e°ºt (m/R)2

[A
nt

on
ia

di
s, 

Ba
ch

as
, D

ud
as

, 1
99

9]



For the Melvin case the situation is a bit more complicated.
The annulus amplitude is deformed in a similar way

The Riemann identity works in a similar way,
but the contribution of the world-sheet fermions does not 

cancel anymore that of the world-sheet bosons.
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Taking the field theory limit (i.e. decoupling string states)
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1. Taylor Expanding the trigonometric function
2. Poisson summing each single term

3. Compute the t-integral 
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The one-loop correction to the gauge coupling constant of 
the “N=2” theory is then expressed in terms of 

an infinite series in powers of    ,
with coefficients related to the Bernoulli numbers

fl

WHY DID I DO ALL THIS?


