COMPUTATIONAL PHYSICS

A PracticaL INTRODUCTION To COMPUTATIONAL PHYSICS
AND Scientiric CompuTinG (using C++)

ATtHENs, 2016

KONSTANTINOS N. ANAGNOSTOPOULOS

National Technical University of Athens

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

COMPUTATIONAL PHYSICS
A Practical Introduction to Computational Physics and Scientific Computing (C++ version)

AUTHORED BY KONSTANTINOS N. ANAGNOSTOPOULOS
Physics Department, National Technical University of Athens, Zografou Campus, 15780 Zografou, Greece
konstant@mail.ntua.gr, www.physics.ntua.gr/ konstant/

PUBLISHED BY KONSTANTINOS N. ANAGNOSTOPOULOS
and the
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Book Website:
www.physics.ntua.gr/ konstant/ComputationalPhysics

©Konstantinos N. Anagnostopoulos 2014, 2016

First Published 2014
Second Edition 2016
Versionﬂ 2.0.20161206201600

Cover: Design by K.N. Anagnostopoulos. The front cover picture is a snapshot taken during Monte Carlo sim-
ulations of hexatic membranes. Work done with Mark J. Bowick. Relevant video at youtu.be/Erc7Q6YXfLk

€ This book and its cover(s) are subject to copyright. They are licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit
creativecommons.org/licenses/by-sa/4.0/

The book is accompanied by software available at the book’s website. All the software, unless the copyright
does not belong to the author, is open source, covered by the GNU public license, see www.gnu.org/licenses/.
This is explicitly mentioned at the end of the respective source files.

ISBN 978-1-365-58322-3 (lulu.com, vol. 1)
ISBN 978-1-365-58338-4 (lulu.com, vol. II)

"The first number is the major version, corresponding to an “edition” of a conventional book. Versions
differing by major numbers have been altered substantially. Chapter numbers and page references are not
guaranteed to match between different versions. The second number is the minor version. Versions differing
by a minor version may have serious errors/typos corrected and/or substantial text modifications. Versions
differing by only the last number may have minor typos corrected, added references etc. When reporting
errors, please mention the version number you are referring to.

http://www.physics.ntua.gr/~konstant/
http://www.physics.ntua.gr/~konstant/ComputationalPhysics
http://youtu.be/Erc7Q6YXfLk
http://creativecommons.org/licenses/by-sa/4.0/
http://www.gnu.org/licenses/

Contents

I[Foreword to the Second Edition|

[Foreword to the First Edition|

1 The Computer]

.1 The Operating System| v v v v v v v v ..
1.1.1 Filesystem| v v v vt
1.1.2 Commandd v
1.1.3 Looking for Help
1.2 Text Processing Tools — Filters
1.3 Programming with Emacy
1.3.1 Calling Emac§.
1.3.2 Interacting with Emacd
1.3.3 Basic Editing
1.3.4 Cutand Pastd o i
1.3.6 Windowsd
1.3.6 Filesand Bufferd
1.3.7 Modes
1.3.8 Emacs Help
1.3.9 Emacs Customization
fl.4 The C++ Programming Languagd
.41 The Foundation
1.5 Gnuplof . . . v v o e
1.6 Shell Scripting v v v e
2 Kinematics
2.1 MotiononthePlaned
2.1.1 Plotting Data v v v vt

1ii

vii

ix

iv CONTENTS
2.1.2 More Examples 82

2.2 Motion in Space 95
2.3 Trappedina BoxX. 105
2.3.1 The One Dimensional Box 105

2.3.2 Errors 114

2.3.3 The Two Dimensional Box 118

0.4 Applications 122
2.5 Problemd 144

B Logistic Map| 149
3.1 Introduction|. 149
3.2 Fixed Points and 2" Cycle§ 152
3.3 Bifurcation Diagrams 159
3.4 The Newton-Raphson Method 163
3.5 Calculation of the Bifurcation Points 169
3.6 Liapunov Exponentd 174
3.7 Problemd 189

. Motion of a Particle 201
4.1 Numerical Integration of Newton’s Equationg 201
4.2 Prelude: Euler Methodd 202
4.3 Runge—Kutta Methods oo v 215
%.3.1 A Program for the 4th Order Runge—Kutta 219

4.4 Comparison of the Methodd 224
4.5 The Forced Damped Oscillatoy 227
4.6 The Forced Damped Pendulum|. 235
4.7 Appendix: On the Euler—Verlet Method 243
4.8 Appendix: 2nd order Runge—Kutta Method 246
4.9 Problemd 249

5 Planar Motion| 253
5.1 Runge—Kutta for Planar Motion| 253
5.2 Projectile Motion| 259
5.3 Planetary Motion| 267
5.4 SCAMETING . . « v v v e e e e e e e e 271
5.4.1 Rutherford Scatteringl 275

5.4.2 More Scattering Potentiald 283

5.5 More Particles 286

CONTENTS

5.6 Problems

6 Motion in Space

6.1

Adaptive Stepsize Control for RK Methods

6.1.1

The rksuite Suite of RK Codes

6.1.2

Interfacing C++ Programs with Fortran

6.1.3

The rksuite Drivef]

6.2

Motion

of a Particle in an EM Field

6.3

Relativistic MOtON . . . v v v v o v e e e e e e

6.4

Problemst i i

[/ Electrostatics

/.1

Electrostatic Field of Point Charged

7.2

The Program — Appetizer and ... Deser{

7.3

The Program — Main Dish

7.4

The Program - Conclusion.

7.5

Electrostatic Field in the Vacuum|

7.6

Results

7.7

Poisson Equationttt

7.8

Problemd

8 Diffusion Equation|

8.1

Introduction v v v v i e e e

8.2

Heat Conduction in a Thin Rod

8.3

Discretization|o e e e

8.4

The Program| o v v vttt

8.5

Results

8.6

Diffusion on the Circle

8.7

Analysis

8.8

Problems

9 The Anharmonic Oscillator]

9.1

Introduction v v v vt e e e e

9.2

Calculation of the Eigenvalues of H,,,,(A\)

9.3

Result

..............................

9.4

The Double Well Potential

9.5

Problems

299

305
306
306
311
317
322
324
337

341
341
344
354
360
366
374
375
382

387
387
389
391
392
395
398
402
406

Vi

1no

Time Independent Schrédinger Equation|

10.5 The Anharmonic Oscillator - Again../

10.7 Problemg

1

The Random Walker|

11.1 (Pseudo)Random Numberg

11.3 The MIXMAX Random Number Generator

11.5 Problems

12

Monte Carlo Simulations

192.4 Correlation Functiong

12.5 Sampling

12.5.2 Importance Sampling|

12.8 Problems

13

Simulation of the d = 2 Ising Model

13.1 The Ising Model

13.3.2 Towards a Convenient User Interface

13.5 Autocorrelations

13.6 Statistical Errors

13.6.1 Errors of Independent Measurements

10.1 Introduction|.
10.2 The Infinite Potential Well
10.3 Bound State§
10.4 Measurements o o v v vttt

10.6 The Lennard—Jones Potentia]

...........

11.2 Using Pseudorandom Number Generators . . .

11.4 Random Walks

12.1 Statistical Physics
12.2 ENtropy] « « v v v vov e e e e e e e
12.3 Fluctuationg v v v v v v v e

12.5.1 Simple Sampling
12.6 Markov Processed o v oo oo
12.7 Detailed Balance Condition|

13.2 Metropoligot
13.3 Implementation
13.3.1 The Program|

13.4 Thermalization

.................

.................

CONTENTS

CONTENTS

13.6.2 Jackknifd

13.6.3 BOOtSITap . . . « v v v oo e e e e

13.7 Appendix: Autocorrelation Function|

13.8 Appendix:

Error Analysi§o o

13.8.1 The

Jackknife Method

13.8.2 The

Bootstrap Method

13.8.3 Comparing the Methodd

3.9 Problemg

fl4 Critical Exponents

14.1 Critical Slowing Down|

14.2 Wolff Cluster Algorithm|

14.3 ITmplementation v v v v i e

f4.3.1 The

Program

14.4 Production|

14.5 Data Analysis v v v v e e e e

14.6 Autocorrelation Timed

14.7 Temperature Scaling v v it

14.8 Finite Size Scaling

14.9 Calculation

of Bl v v o

14.10Studying Scaling with Collapsd

14.11Binder Cumulanto

14.12Appendix:

Scaling

14.12.1Binder Cumulant o

14.12.2Scalingo

14.12.3Finite Size Scaling

fl4.13Appendix:

Critical Exponenty

14.13.1Definitionso

14.13.2Hyperscaling Relations

fl4.14Problemg

Bibliography

vii

593
595
596
604
604
608
612
618

625
627
628
636
638
644
647
655
661
667
669
675
683
688
688
694
696
700
700
700
702

705

viii CONTENTS

This book has been written assuming that the reader executes
all the commands presented in the text and follows all the
instructions at the same time. If this advice is neglected, then
the book will be of little help and some parts of the text may
seem incomprehensible.

The book’s website is at
http://www.physics.ntua.gr/ konstant/ComputationalPhysics/
From there, you can can download the accompanying software, which con-
tains, among other things, all the programs presented in the book.

Some conventions: Text using the font shown below refers to com-
mands given using a shell (the “command line”), input and output of
programs, code written in Fortran (or any other programming language),
as well as to names of files and programs:

> echo Hello world
Hello world

When a line starts with the prompt

>

then the text that follows is a command, which can be given from the
command line of a terminal. The second line, Hello World, is the output
of the command.

The contents of a file with C++ code is listed below:

int main() {
double x = 0.0;
for(int i=0;i<10;i++){
X += 1i;

http://www.physics.ntua.gr/~konstant/ComputationalPhysics/

CONTENTS ix

What you need in order to work on your PC:

An operating system of the GNU/Linux family and its basic tools.

A Fortran compiler. The gfortran compiler is freely available
for all major operating systems under an open source license at
http://www.gfortran.org.

An advanced text editor, suitable for editing code in several pro-
gramming languages, like Emacsﬁ.

A good plotting program, suitable for data analysis, like gnuplotf.
The shell tcshi.

The programs awkﬁ, grep, sort, cat, head, tail, less. Make sure
that they are available in your computer environment.

If you have installed a GNU/Linux distribution on your computer,
all of the above can be installed easily. For example, in a Debian like
distribution (Ubuntu, ...) the commands

> sudo apt—get install tcsh emacs gnuplot gnuplot—doc
> sudo apt—get install gfortran gawk gawk—doc binutils
> sudo apt—get install manpages—dev coreutils liblapack3

install all the necessary tools.
If you don’t wish to install GNU/Linux on your computer, you can
try the following:

Boot your computer using a usb/DVD live GNU/Linux, like Ubuntuf.
This will not make any permanent changes in your hard drive but
it will start and run slower. On the other hand, you may save all

*http://www.gnu.org/software/emacs/
*http://www.gnuplot.info
“http://www.tcsh.org
*http://www.gnu.org/software/gawk
*http://www.ubuntu. com

http://www.gfortran.org
http://www.gnu.org/software/emacs/
http://www.gnuplot.info
http://www.tcsh.org
http://www.gnu.org/software/gawk
http://www.ubuntu.com

CONTENTS

your computing environment and documents and use it on any
computer you like.

e Install Cygwinf in your Microsoft Windows. It is a very good solu-
tion for Microsoft-addicted users. If you choose the full installation,
then you will find all the tools needed in this book.

* Mac OS X is based on Unix. It is possible to install all the software
needed in this book and follow the material as presented. Search

2 ¢

the internet for instructions, e.g. google “gfortran for Mac”, “emacs

2% ¢

for Mac”, “tecsh for Mac”, etc.

"http://www.cygwin. com

http://www.cygwin.com

Foreword to the Second Edition

This book has been out “in the wild” for more than two years. Since
then, its pdf version has been downloaded 2-5000 times/month from the
main server and has a few thousand hits from sites that offer science e-
books for free. I have also received positive feedback from students and
colleagues from all over the world and that gave me the encouragement
to devote some time to create a C++ version of the book. As far as
scientific programming is concerned, the material has not changed apart
from some typo and error correctionsf].

I have to make it clear that by using this book you will not learn
much on the advanced features of C++. Scientific computing is usually
simple at its core and, since it must be made efficient and accurate, it
needs to go down to the lowest levels of programming. This also partly
the reason of why I chose to use Fortran for the core programming in
the first edition of the book: It is a language designed for numerical
programming and high performance computing in mind. It is simple
and a scientist or engineer can go directly into programming her code.
C++ is not designed for scientific applicationsf| in mind and this reflects
on some trivial omissions in its standard. Still, many scientific groups are
now using C++ for programming and the C++ compilers have improved
quite a lot. There is still an advantage in performance using a Fortran
compiler on a supercomputer, but this is not going to last for much longer.

Still, for a scientist, the programming language is a tool to solve her
scientific problems. One should not bind herself to a specific language.
The treasures of today are the garbage of tomorrow, and the time scale
for this happening is small in today’s computing environments. What

*Check the errata section at the book’s homepage.
’Object oriented languages’ aim is to improve modularity, maintenability and flexi-
bility of programs.

Xi

xii FOREWORD TO THE SECOND EDITION

has really lasting value is the ability to solve problems using a computer
and this is what needs to be emphasized. Consistent with this idea is
that, in the course of reading this book, you will also learn how to make
your C++ code interact with code written in Fortran, like in the case of
the popular library Lapack. This will improve your “multilingual skills”
and flexibility with interacting with legacy code.

The good news for us scientists is that numerical code usually needs
simple data structures and programming is similar in any language. It
was simple for me to “translate” my book from Fortran to C++. Un-
fortunately I will not touch on all this great stuft in true object oriented
programming but you may be happy to know that you will most likely
not need it[].

So, I hope that you will enjoy using my book and I remind you that
I love fan mail and I appreciate comments/corrections/suggestions sent
to me. Now, if you want to learn about the structure and educational
procedure in this book, read the foreword to the first edition, otherwise
skip to the real fun of solving scientific problems numerically.

Athens, 2016.

A lot of C++ code out there is realizing procedural and not true object oriented
programming.

Foreword to the First Edition

This book is the culmination of my ten years’ experience in teaching
three introductory, undergraduate level, scientific computing/computational
physics classes at the National Technical University of Athens. It is suit-
able mostly for junior or senior level science courses, but I am currently
teaching its first chapters to sophomores without a problem. A two
semester course can easily cover all the material in the book, including
lab sessions for practicing.

Why another book in computational physics? Well, when I started
teaching those classes there was no bibliography available in Greek, so I
was compelled to write lecture notes for my students. Soon, I realized that
my students, majoring in physics or applied mathematics, were having
a hard time with the technical details of programming and computing,
rather than with the physics concepts. I had to take them slowly by the
hand through the “howto” of computing, something that is reflected in
the philosophy of this book. Hoping that this could be useful to a wider
audience, I decided to translate these notes in English and put them in
an order and structure that would turn them into “a book”.

I also decided to make the book freely available on the web. I was
partly motivated by my anger caused by the increase of academic (e)book
prices to ridiculous levels during times of plummeting publishing costs.
Publishers play a diminishing role in academic publishing. They get an
almost ready-made manuscript in electronic form by the author. They
need to take no serious investment risk on an edition, thanks to print-
on-demand capabilities. They have virtually zero cost ebook publishing.
Moreover, online bookstores have decreased costs quite a lot. Academic
books need no advertisement budget, their success is due to their aca-
demic reputation. I don’t see all of these reflected on reduced book
prices, quite the contrary, I'm afraid.

xiii

xiv FOREWORD TO THE FIRST EDITION

My main motivation, however, is the freedom that independent pub-
lishing would give me in improving, expanding and changing the book
in the future. It is great to have no length restrictions for the presenta-
tion of the material, as well as not having to report to a publisher. The
reader/instructor that finds the book long, can read/print the portion of
the book that she finds useful for her.

This is not a reference book. It uses some interesting, I hope, physics
problems in order to introduce the student to the fundamentals of solv-
ing a scientific problem numerically. At the same time, it keeps an eye
in the direction of advanced and high performance scientific computing.
The reader should follow the instructions given in each chapter, since
the book teaches by example. Several skills are taught through the solution
of a particular problem. My lectures take place in a (large) computer
lab, where the students are simultaneously doing what I am doing (and
more). The program that I am editing and the commands that I am
executing are shown on a large screen, displaying my computer monitor
and actions live. The book provides no systematic teaching of a program-
ming language or a particular tool. A very basic introduction is given in
the first chapter and then the reader learns whatever is necessary for the
solution of her problem. There is more than one way to do itf] and the
problems can be solved by following a basic or a fancy way, depending
on the student’s computational literacy. The book provides the necessary
tools for both. A bibliography is provided at the end of the book, so that
the missing pieces of a puzzle can be sought in the literature.

This is also not a computational physics playground. Of course I
hope that the reader will have fun doing what is in the book, but my
goal is to provide an experience that will set the solid foundation for
her becoming a high performance computing, number crunching, heavy
duty data analysis expert in the future. This is why the programming
language of the core numerical algorithms has been chosen to be Fortran,
a highly optimized, scientifically oriented, programming language. The
computer environment is set in a Unix family operating system, enriched
by all the powerful GNU tools provided by the FSF[]. These tools are
indispensable in the complicated data manipulation needed in scientific
research, which requires flexibility and imagination. Of course, Fortran

A Perl moto!
“Free Software Foundation, www.fsf.org.

http://www.fsf.org

XV

is not the best choice for heavy duty object oriented programming, and is
not optimal for interacting with the operating system. The philosophyf]
is to let Fortran do what is best for, number crunching, and leave data
manipulation and file administration to external, powerful tools. Tools,
like awk, shell scripting, gnuplot, Perl and others, are quite powerful
and complement all the weaknesses of Fortran mentioned before. The
plotting program is chosen to be gnuplot, which provides very powerful
tools to manipulate the data and create massive and complicated plots. It
can also create publication quality plots and contribute to the “fun part”
of the learning experience by creating animations, interactive 3d plots
etc. All the tools used in the book are open source software and they are
accessible to everyone for free. They can be used in a Linux environment,
but they can also be installed and used in Microsoft Windows and Mac
0S X.

The other hard part in teaching computational physics to scientists
and engineers is to explain that the approach of solving a problem nu-
merically is quite different from solving it analytically. Usually, students
of this level are coming with a background in analysis and fundamental
physics. It is hard to put them into the mode of thinking about solving
a problem using only additions, multiplications and some logical opera-
tions. The hardest part is to explain the discretization of a model defined
analytically, which can be done in many ways, depending on the accu-
racy of the approximation. Then, one has to extrapolate the numerical
solution, in order to obtain a good approximation of the analytic one.
This is done step by step in the book, starting with problems in simple
motion and ending with discussing finite size scaling in statistical physics
models in the vicinity of a continuous phase transition.

The book comes together with additional material which can be found
at the web page of the book{{. The accompanying software contains all the
computer programs presented in the book, together with useful tools and
programs solving some of the exercises of each chapter. Each chapter has
problems complementing the material covered in the text. The student

“Java and C++ have been popular choices in computational physics courses. But
object oriented programming is usually avoided in the high performance part of a com-
putation. So, one usually uses those languages in a procedural style of programming,
cheating herself that she is actually learning the advantages of object oriented program-
ming.

“www.physics.ntua.gr/ konstant/ComputationalPhysics/

xvi FOREWORD TO THE FIRST EDITION

needs to solve them in order to obtain hands on experience in scientific
computing. I hope that I have already stressed enough that, in order for
this book to be useful, it is not enough to be read in a café or in a living
room, but one needs to do what it says.

Hoping that this book will be useful to you as a student or as an
instructor, I would like to ask you to take some time to send me feedback
for improving and/or correcting it. I would also appreciate fan mail or,
if you are an expert, a review of the book. If you use the book in a
class, as a main textbook or as supplementary material, I would also be
thrilled to know about it. Send me email at konstantmail.ntua.gr and
let me know if I can publish, anonymously or not, (part of) what you say
on the web page (otherwise I will only use it privately for my personal
ego-boost). Well, nothing is given for free: As one of my friends says,
some people are payed in dollars and some others in ego-dollars!

Have fun computing scientifically!

Athens, 2014.

Chapter 1

The Computer

The aim of this chapter is to lay the grounds for the development of
the computational skills which are necessary in the following chapters.
It is not an in depth exposition but a practical training by example.
For a more systematic study of the topics discussed, we refer to the
bibliography. Many of the references are freely available on the web.

The are many choices that one has to make when designing a com-
puter project. These depend on the needs for numerical efficiency, on
available programming hours, on the needs for extensibility and upgrad-
ability and so on. In this book we will get the flavor of a project that is
mostly scientifically and number crunching oriented. One has to make
the best of the available computing resources and have powerful tools
available for a productive analysis of the data. Such an environment,
found in most of today’s supercomputers, that offers flexibility, depend-
ability, simplicity, powerful tools for data analysis and effective compilers
is provided by the family of the Unix operating systems. The GNU/Linux
operating system is a Unix variant that is freely available and most of its
utilities are open source software. The voluntary work of millions of
excellent programmers worldwide has built the most stable, fastest and
highest quality software available for scientific computing today. Thanks
to the idea of the open source software pioneered by Richard Stallman|
this giant collaboration has been made possible.

Another choice that we have to make is the programming language.
In this edition of the book we will be programming in C++. C++ is a

'www.stallman.org

2 CHAPTER 1. THE COMPUTER

language with very high level of abstraction designed for projects where
modular programming and the use of complicated data structures is of
very high priority. A large and complicated project should be divided into
independent programming tasks (modules), where each task contains
everything that it needs and does not interfere with the functionality of
other modules. Although it has not been designed for high performance
numerical applications, it is becoming more and more popular in the
recent years.

C++, as well as other languages like C, Java and Fortran, is a language
that needs to be compiled by a compiler. Other languages, like python,
perl, awk, shell scripting, Macsyma, Mathematica, Octave, Matlab, ..., are
interpreted line by line. These languages can be simple in their use, but
they can be prohibitively slow when it comes to a numerically demand-
ing program. A compiler is a tool that analyzes the whole program and
optimizes the computer instructions executed by the computer. But if
programming time is more valuable, then a simple, interpreted language
can lead to faster results.

Another choice that we make in this book, and we mention it because
it is not the default in most Linux distributions, is the choice of shell.
The shell is a program that “connects” the user to the operating system.
In this book, we will teach how to use a shellf to “send” commands to the
operating system, which is the most effective way to perform complicated
tasks. We will use the shell tcsh, although most of the commands can be
interpreted by most popular shells. Shell scripting is simpler in this shell,
although shells like bash provide more powerful tools, mostly needed
for complicated system administration tasks. That may cause a small
inconvenience to some readers, since tcsh is not preinstalled in Linux
distributions]].

1.1 The Operating System

The Unix family of operating systems offer an environment where com-
plicated tasks can be accomplished by combining many different tools,

It is more popular to be called “the command line”, or the “terminal”, or the
“console”, but in fact the user interaction is through a shell.

*See www.tcsh.org. On Debian like systems, like Ubuntu, installation is very simple
through the software center or by the command sudo apt-get install tcsh.

http://www.tcsh.org

1.1. THE OPERATING SYSTEM 3

each of which performs a distinct task. This way, one can use the power
of each tool, so that trivial but complicated parts of a calculation don’t
have to be programmed. This makes the life of a researcher much easier
and much more productive, since research requires from us to try many
things before we understand how to compute what we are looking for.

In the Unix operating system everything is a file, and files are or-
ganized in a unique and unified filesystem. Documents, pictures, music,
movies, executable programs are files. But also directories or devices,
like hard disks, monitors, mice, sound cards etc, are, from the point of
view of the operating system, files. In order for a music file to be played
by your computer, the music data needs to be written to a device file,
connected by the operating system to the sound card. The characters
you type in a terminal are read from a file “the keyboard”, and written
to a file “the monitor” in order to be displayed. Therefore, the first thing
that we need to understand is the structure of the Unix filesystem.

1.1.1 Filesystem

There is at least one path in the filesystem associated with each file. There
are two types of paths, relative paths and absolute paths. These are two
examples:

bin/RungeKutta/rk.exe
/home/george/bin/RungeKutta/rk.exe

The paths shown above may refer to the same or a different file. This
depends on “where we are”. If “we are” in the directory /home/george,
then both paths refer to the same file. If on the other way “we are” in
a directory /home/john or /home/george/CompPhys, then the paths refer
to two different files. In the last two cases, the paths refer to the files

/home/john/bin/RungeKutta/rk.exe
/home/george /CompPhys/bin/RungeKutta/rk.exe

respectively. How can we tell the difference? An absolute path always
begins with the / character, whereas a relative path does not. When we

‘Some times two or more paths refer to the same file, or as we say, a file has two or
more “links” in the same filesystem, but let’s keep it simple for the moment.

4 CHAPTER 1. THE COMPUTER

say that “we are in a directory”, we refer to a position in the filesystem
called the current directory, or working directory. Every process in the
operating system has a unique current directory associated with it.

/

Roak
Dirsckagy

horne il usr bin atec dev war
rriary ge;rge john lib bin share |n;al man
Daoc Ca-mpF'hys M ail ML;EiE ;n - lib
LecOl Lecrl:lz Fock Greek Jazz

Progs Motes Problems

Figure 1.1: The Unix filesystem. It looks like a tree, with the root directory / at the
top and branches that connect directories with their parents. Every directory contains
files, among them other directories called its subdirectories. Every directory has a unique
parent directory, noted by .. (double dots). The parent of the root directory is itself.

The filesystem is built on its root and looks like a tree positioned
upside down. The symbol of the root is the character / The root is
a directory. Every directory is a file that contains a list of files, and it
is connected to a unique directory, its parent directory . Its list of files
contains other directories, called its subdirectories, which all have it as
their parent directory. All these files are the contents of the directory.
Therefore, the filesystem is a tree of directories with the root directory
at its top which branch to its subdirectories, which in their turn branch

1.1. THE OPERATING SYSTEM 5

into other subdirectories and so on. There is practically no limit to how
large this tree can become, even for a quite demanding environmentf].

A path consists of a string of characters, with the characters / sep-
arating its components, and refers to a unique location in the filesystem.
Every component refers to a file. All, but the last one, must be directories
in a hierarchy, from parent directory to subdirectory. The only exception
is a possible / in the beginning, which refers to the root directory. Such
an example can be seen in figure [I.1.

In a Unix filesystem there is complete freedom in the choice of the loca-
tion of the filesf. Fortunately, there are some universally accepted conven-
tions respected by almost everyone. One expects to find home directories
in the directory /home, configuration files in the directory /etc, appli-
cation executables in directories with names such as /bin, /usr/bin,
/usr/local/bin, software libraries in directories with names such as
/1ib, /usr/1lib etc.

There are some important conventions in the naming of the paths. A
single dot “.” refers to the current directory and a double dot “..” to the
parent directory. Similarly, a tilde “~” refers to the home directory of the
user. Assume, e.g., that we are the user george running a process with
a current directory /home/george/Music/Rock (see figure [I.1). Then, the
following paths refer to the same file /home/george/Doc/lyrics.doc:

../../Doc/lyrics.doc
~/Doc/lyrics.doc
~george/Doc/lyrics.doc
./../../Doc/lyrics.doc

Notice that ~ and ~george refer to the home directory of the user george
(ourselves), whereas ~mary refer to the home directory of another user,
mary.

’

*Of course, the capacity of the filesystem is finite, issue the command “df -i .” in
order to see the number of inodes available in your filesystem. Every file corresponds
to one and only one inode of the filesystem. Every path is mapped to a unique inode,
but an inode maybe pointed to by more than one paths.

°This gives a great sense of freedom, but historically this was a important factor that
led the Unix operating systems, although superior in quality, not to win a fair share
of the market! The Linux family tries to keep things simple and universal to a large
extent, but one should be aware that because of this freedom files in different version
of Linuxes or Unices can be in different places.

6 CHAPTER 1. THE COMPUTER

We are now going to introduce the basic commands for filesystem
navigation and manipulation]. The command cd (=change directory)
changes the current directory, whereas the command pwd (=print working
directory) prints the current directory:

> c¢d /usr/bin
> pwd

/usr/bin

> cd /usr/local/lib
> pwd
/usr/local/lib
> cd

> pwd
/home/george

> cd —

> pwd
/usr/local/lib
>ed ../../

> pwd

/usr

The argument of the command cd is an absolute or a relative path. If
the path is correct and we have the necessary permissions, the command
changes the current directory to this path. If no path is given, then
the current directory changes to the home directory of the user. If the
character - is given instead of a path, then the command changes the
current directory to the previous current directory.

The command mkdir creates new directories, whereas the command
rmdir removes empty directories. Try:

> mkdir new

> mkdir new/01

> mkdir new/01/02/03

mkdir: cannot create directory ‘new/01/02/03’: No such file or
directory

> mkdir —p new/01/02/03

> rmdir new

rmdir: ‘new’: Directory not empty

> rmdir new/01/02/03

"Remember that lines that begin with the > character are commands. All other lines
refer to the output of the commands.

1.1. THE OPERATING SYSTEM 7

> rmdir new/01/02
> rmdir new/01
> rmdir new

Note that the command mkdir cannot create directories more than one
level down the filesystem, whereas the command mkdir -p can. The
“switch” -p makes the behavior of the command different than the default
one.

In order to list the contents of a directory, we use the command 1s
(=list):

> s

BE.eps Byz.eps Programs srBE_xyz.eps srB_xyz.eps
B.eps Bzy.eps srBd_xyz.eps srB_xy.eps

> ls Programs

Backup rk3_Byz.cpp rk3.cpp

plot—commands rk3_Bz.cpp rk3_g.cpp

The first command is given without an argument and it lists the con-
tents of the current directory. The second one, lists the contents of the
subdirectory of the current directory Programs. If the argument is a list
of paths pointing to regular files, then the command prints the names of
the paths. Another way of giving the command is

total 252

-rw-r--r-- | george users 24284 May 1 12:08 BE.eps
-rw-r--r-- 1 george users 22024 May 1 11:53 B.eps
-rw-r--r-- 1 george users 29935 May 1 13:02 Byz.eps
-rw-r--r-- 1 george users 48708 May 1 12:41 Bzy.eps
drwxr-xr-x 4 george users 4096 May 1 23:38 Programs
-rw-r--r-- | george users 41224 May 1 22:56 srBd_xyz.eps
-rw-r--r-- 1 george users 23187 May 1 21:13 srBE_xyz.eps
-rw-r--r-- 1 george users 24610 May 1 20:29 srB_xy.eps
-rw-r--r-- | george users 23763 May 1 20:29 srB_xyz.eps

The switch -1 makes 1s to list the contents of the current directory to-
gether with useful information on the files in 9 columns. The first column
lists the permissions of the files (see below). The second one lists the num-
ber of links of the files. The third one lists the user who is the owner of

*For a directory it means the number of its subdirectories plus 2 (the parent directory

8 CHAPTER 1. THE COMPUTER

each file. The fourth one lists the group that is assigned to the files. The
fifth one lists the size of the file in bytes (=8 bits). The next three ones
list the modification time of the file and the last one the paths of the files.

File permissionsf] are separated in three classes: owner permissions,
group permissions and other permissions. Each class is given three spe-
cific permissions, r=read, w=write and x=execute. For regular files, read
permission effectively means access to the file for reading/copying, write
permission means permission to modify the contents of the file and ex-
ecute permission means permission to execute the file as a commandﬂ.
For directories, read permission means that one is able to read the names
of the files in the directory (but not make it as current directory with the
cd command), write permission means to be able to modify its contents
(i.e. create, delete, and rename files) and execute permission grants per-
mission to access/modify the contents of the files (but not list the names
of the files, this is granted by the read permission).

The command 1s -1 lists permissions in three groups. The owner
(positions 2-4), the group (positions 5-7) and the rest of the world (others
- positions 8-10). For example

—IwW-Ir——r—-—

drwx--x--x

In the first case, the owner has read and write but not execute permissions
and the group-+others have only read permissions. In the second case,
the user has read, write and execute permissions, the group has read
permissions and others have no permissions at all. In the last case, the
user has read, write and execute permissions, whereas the group and the
world have only execute permissions. The first character d indicates a
special file, which in this case is a directory. All special files have this
position set to a character, while regular files have it set to -.

File permissions can be modified by using the command chmod:

and itself). For a regular file, it shows how many paths in the filesystem point to this
file.

’See the “File system permissions” entry in en.wikipedia.org.

°0f course it is the user’s responsibility to make sure the file with execute permission
is actually a program that is possible to execute. An error results if this is not the case.

1.1. THE OPERATING SYSTEM 9

> chmod u+x file
> chmod og—w filel file?2
> chmod a+r file

Using the first command, the owner (u= user) obtains (+) permission
to execute (x) the file named file. Using the second one, the rest of
the world (o= others) and the group (g=group) loose (-) the write (w)
permission to the files named filel and file2. Using the third one,
everyone (a=all) obtain read (r) permission on the file named file.

We will close this section by discussing some commands which are
used for administering files in the filesystem. The command cp (copy)
copies the contents of files into other files:

> cp filel.cpp file2.cpp
> cp filel.cpp file2.cpp file3.cpp Programs

If the file file2. cpp does not exist, the first command copies the contents
of filel.cpp to a new file file2.cpp. If it already exists, it replaces its
contents by the contents of the file file2.cpp. In order for the second
command to be executed, Programs needs to be a directory. Then, the
contents of the files filel.cpp, file2.cpp, file3.cpp are copied to
indentical files in the directory Programs. Of course, we assume that
the user has the appropriate privileges for the command to be executed
successfully.
The command mv “moves”, or renames, files:

> mv filel.cpp file2.cpp
> mv filel.cpp file2.cpp file3.cpp Programs

The first command renames the file filel.cpp to file2.cpp. The second
one moves files filel.cpp, file2.cpp, file3.cpp into the directory
Programs.

The command rm (remove) deletes ﬁles[‘]. Beware, the command is
unforgiving: after deletion, a file cannot be restored into the filesystem/?.

"Actually it removes “links” from files. A file may have more than one links in the
same partition of a filesystem. A file is deleted when its last link is removed.

“This does not mean that its contents have been deleted from the disk. Deletion
means marking for overwriting. Until the data is overwritten it can be recovered by the

10 CHAPTER 1. THE COMPUTER

Therefore, after executing successfully the following commands

> 1s

filel.cpp file2.cpp file3.cpp file4.csh
> rm filel.cpp file2.cpp file3.cpp

> s

filed4.csh

the files filel.cpp, file2.cpp, file3.cpp do not exist in the filesystem
anymore. A more prudent use of the command demands the flag -1i.
Then, before deletion we are asked for confirmation:

>rm —i *

rm: remove regular file ‘filel.cpp’? y
rm: remove regular file ‘file2.cpp’? y
rm: remove regular file ‘file3.cpp’? y
rm: remove regular file ‘filed4.csh’? n
> Is

filed4.csh

When we type y, the file is deleted, when we type n, the file is not deleted.

We cannot remove directories the same way. It is possible to use
the command rmdir in order to remove empty directories. In order to
delete directories together with their contents (including subdirectories
and their contents) use the command/] rm -r. For example, assume that
the contents of the directories dirl and dir1/dir2 are the files:

./dir1
./dirl/file2.cpp
./dirl/filel.cpp
./dirl/dir2
./dirl/dir2/file3.cpp

Then the results of the following commands are:

> rm diri
rm: cannot remove ‘dirl’: Is a directory
> rm diril/dir2

use of special tools. Shredding sensitive data can be tricky business...
A small mistake, like rm -rf * and your data is ... history!

1.1. THE OPERATING SYSTEM 1

rm: cannot remove ‘dirl/dir2’: Is a directory
> rmdir diri1

rmdir: dirl: Directory not empty

> rmdir dir1/dir2

rmdir: dirl/dir2: Directory not empty

> rm —r dirl

The last command removes all files (assuming that we have write per-
missions for all directories and subdirectories). Alternatively, we can
empty the contents of all directories first, and then remove them with the
command rmdir:

cd dirl/dir2; rm file3.cpp
cd .. ; rmdir dir2

rm filel.cpp file2.cpp

cd .. ; rmdir diril

V VvV VvV

Note that by using a semicolon, we can execute two or more commands
on the same line.

1.1.2 Commands

Commands in a Unix operating system are files with execute permission.
When we write a sentence on the command line, like

> ls —1 test.cpp test.dat

the shell reads its and interprets it. The shell is a program that creates a
interface between a user and the operating system. The first word (1s) of
the sentence is interpreted as a command. The rest of the words are the
arquments of the command and the program can use them (or not) at the
discretion of its programmer. There is a special convention for arguments
that begin with a - (e.g. -1, --help, --version, -03). They are called
options or switches, and they act as virtual switches that make the program
act in a particular way. We have already seen that the program 1s gives
a different output with the switch -1.

In order for a command to be executed, the shell looks for a file that
has the same name as the command (here a file named 1s). In order
to understand where the shell looks for such a file, we should digress

12 CHAPTER 1. THE COMPUTER

a little bit and explain the use of shell variables and environment variables.
These have a name, which is a string of permissible characters, and their
values are obtained by preceding their name with the $ character. For
example the variable PATH has value $PATH. The values of the environment
variables can be set with the command[] setenv and of the shell variables
with the command set:

> setenv MYVAR test—env
> set myvar = test—shell
> echo $MYVAR $myvar
test—env test—shell

Two special variables are the variables PATH and path:

>echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/X11/bin
>echo $path
/usr/local/bin /usr/bin /bin /usr/X11/bin

The first one is an environment variable and the second one is a shell
variable. Their values are set by the shell, and we don’t need to worry
about them, unless we want to change them. Their value is a string of
characters whose components should be valid paths to directories. In
the first case, the components are separated by a :, while in the second
case, by one or more spaces. In the example shown above, the shell
searches each component of the path or PATH variables (in this order)
until it finds a file 1s in their contents. If it succeeds and the file has
execute permissions, then the program in this file is executed. If it fails,
then it prints an error message. Try the commands:

> which 1s

/bin/1s

> 1ls —1 /bin/ls

—rwxr—xr—x 1 root root 93560 Sep 28 2006 /bin/ls

We see that the program that the 1s command executes the program in
the file /bin/1s.

“The command setenv is special to the tcsh shell. For example the bash shell uses
the syntax MYVAR=test-env in order to set the value of an environment variable.

1.1. THE OPERATING SYSTEM 13

The arguments of a command are passed on to the program that the
command executes for possible interpretation. For example:

> ls —1 test.cpp test.dat

The argument -1 is the switch that results in a long listing of the files.
The arguments test.cpp and test.dat are interpreted by the program
1s as paths that it will look up for file information.

You can use the * (wildcard) character as a shorthand notation for a
group of files. For example, in the command shown below

> 1s =1 *.cpp *.dat

the shell will expand *.cpp and *.dat to a list of all files whose names
end with .cpp or .dat. Therefore, if the current directory contains the
files test.cpp, testl.cpp, myprog.cpp, test.dat, hello.dat, the ar-
guments that will be passed on to the command 1s are

> 1s —1 myprog.cpp testl.cpp test.cpp hello.dat test.dat

For each command there are three special files associated with it. The
first one is the standard input (stdin), the second one is the standard output
(stdout) and the third one the standard error (stderr). These are files
where the program can print or read data from. By default, these files
are the terminal that the user uses to execute the command. In this case,
when the program reads data from the stdin, then it reads the data
that we type to the terminal using the keyboard. When the program
writes data to the stdout or to the stderr, then the data is written to the
terminal.

The advantage of using these special files in order to read/write data
is that the user can redirect the input/output to these files to any file she
wants. Using the character > at the end of a command redirects the
stdout to the file whose name is written after >. For example:

> s

filel.cpp file2.cpp file3.cpp file4.csh
> lIs > results

> s

14 CHAPTER 1. THE COMPUTER

‘filel.cpp file2.cpp file3.cpp file4.csh results

The first of the above commands, prints the contents of the current work-
ing directory to the terminal. The second command redirects data written
to the stdout to the file results. After executing the command, the file
results is created and its contents are the names of the files filel.cpp
file2.cpp file3.cpp file4.csh. If the file results does not exist (as in
the above example), the file is created. If it already exists, it is truncated
and its contents replaced by the data written to the stdout of the com-
mand. If we want to append data without erasing the existing contents,
then we should use the string of characters >>. Therefore, if we give the
command

> 1s >> results

after executing the previous commands, then the contents of the file
results will be

filel.cpp file2.cpp file3.cpp file4d.csh
filel.cpp file2.cpp file3.cpp file4.csh results

The redirection of the stdin is accomplished by the use of the char-
acter < while that of the stderr by the use of the string of charactersf]
>&. We will see more examples in section [l.2.

It is possible to redirect the stdout of a command to be the stdin
of another command. This is very useful for creating filters. A filter is
a command that creates a flow of data between two or more programs.
This process is called piping. Pipes are creating by using the character |

> cmdl | cmd2 | ecmd3 | ... | cmdN

Using the syntax shown above, the stdout of the command cmd1 is redi-
rected to the stdin of the command cmd2, the stdout of the command
cmd? is redirected to the stdin of the command cmd3 etc. More examples
will be presented in section [L.2.

This syntax is particular to the tcsh shell. For other shells (bash, sh, ...) read
their documentation.

1.1. THE OPERATING SYSTEM 15

1.1.3 Looking for Help

Unix got itself a reputation for not being user friendly. This is far from the
truth. Although there is a steep learning curve, detailed documentation
for almost everything is available online.

The key for a comfortable ride is to learn how to use the help system
available on your computer and on the internet. Most of the commands
are self documented. A simple test, like the one shown below, will help
you with the basic usage of most of the commands:

> cmd --help
> cmd -h
> cmd -help
> cmd -\?

For example, try the command 1s --help. For a window application,
start from the menu “Help”. You should not be afraid and/or lazy and
you should proceed with careful searching and reading.

For example, let’s assume that you have heard about a command that
sounds like printf, or something like that. The first level of online help
is the man (=manual) command that searches the “man pages”. Read the
output of the command

> man printf

The command info usually provides more detailed and user friendly
documentation. It has basic browsing capabilities like the browsers you
use to read pages from the internet. Try the command

> info printf

Furthermore, the commands

> man —k printf
> whatis printf

will inform you that there are other, possibly related, commands with
names like fprintf, fwprintf, wprintf, sprintf...:

16 CHAPTER 1. THE COMPUTER

> whatis printf

printf (1) — format and print data

printf (1p) — write formatted output

printf (3) — formatted output conversion

printf (3p) — print formatted output

printf [builtins] (1) — bash built—in commands, see bash<«
(1)

The second column printed by the whatis command is the “section” of
the man pages. In order to gain access to the information in a particular
section, you have to give it as an argument to the man command:

> man 1 printf
> man 1p printf
> man 3 printf
> man 3p printf
> man bash

Section 1 of the man pages contains information of ordinary command
line commands, section 3 contains information on functions in libraries
of the C language. Section 2 contains information on commands used for
system administration. You may browse the directory /usr/share/man,
or read the man page of the man command (use the command man man
for that!).

By using the command

> printf --help

we obtain plenty of memory refreshing information. The command

> locate printf

shows us many files related to the command printf. The commands

> which printf
> where printf

give information on the location of the executable(s) of the command
printf.

1.2. TEXT PROCESSING TOOLS - FILTERS 17

Another useful feature of the shell is the command or it filename com-
pletion. This means that we can write only the first characters of the
name of a command or filename and then press simultaneously the keys
[Ctr1-d][(i.e. press the key Ctrl and the key of the letter d at the same
time). Then the shell will complete the name of the command up to the
point that is is unique with the given string of charactersf’:

> pri[Ctrl—d]
printafm printf printenv printnodetest

Try to type an x on the command line and then type [Ctrl-d]. You will
learn all the commands that are available and whose name begins with
an x: xterm, xeyes, xclock, xcalc,

Finally, the internet contains a wealth of information. Google your
blues... and you will be rewarded!

1.2 Text Processing Tools — Filters

For doing data analysis, we will need powerful tools for manipulating
data in text files. These are files that consist solely of printable charac-
ters. Some tools that can be used in order to construct complicated and
powertul filters are the programs cat, less, head, tail, grep, sort
and awk.

Suppose that we have data in a file named dataf] which contains
information on the contents of a food warehouse and their prices:

bananas 100 pieces 1.45
apples 325 boxes 1.18
pears 34 kilos 2.46
bread 62 kilos 0.60
ham 85 kilos 3.56

"It you use the bash shell press [Tab] once or twice.

"Use the same procedure to auto-complete the names of files in the arguments of
commands.

¥The particular file, as well as most of the files in this section, can be found in the
accompanying software of the chapter. It is highly recommended that you try all the
commands in this section by using all the provided files.

18 CHAPTER 1. THE COMPUTER

The command

> cat data

prints the contents of the file data to the stdout. In general, this com-
mand prints the contents of all files given in its arguments or the stdin
if none is given. Since the stdin and the stdout can be redirected, the
command

> cat < data > datal

takes the contents of the file data from the stdin and prints them to the
stdout, which in this case is the file datal. This command has the same
result as the command:

> cp data datal

The command

> cat data datal > data2

prints the contents of the file data and then the contents of the file datal
to the stdout. Since the stdout is redirected to the file data2, data?2
contains the data of both files.

By giving the command

> less gfortran.txt

you can browse the data contained in the file gfortran.txt one page at
a time. Press [space] in order to “turn” a page, [b] to turn back a page.
Press the up and down arrows to move one line backwards/forward.
Press [g] in order to jump to the beginning of the file and press [G] in
order to jump to the end. Press [h] in order to get a help message and
press [q] in order to quit.

The commands

‘> head —n 1 data

1.2. TEXT PROCESSING TOOLS - FILTERS 19

bananas 100 pieces 1.45
> tail —mn 2 data

bread 62 kilos 0.60
ham 85 kilos 3.56
> tail —m 2 data | head —n 1
bread 62 kilos 0.60

print the first line, the last two lines and the second to the last line of
the file data to the stdout respectively. Note that, by piping the stdout
of the command tail to the stdin of the command head, we are able to
construct the filter “print the line before the last one”.

The command sort sorts the contents of a file by comparing each line
of its text with all others. The sorting is alphabetical, unless otherwise
set by using options. For example

> sort data
apples 325 boxes 1.18
bananas 100 pieces 1.45

bread 62 kilos 0.60
ham 85 kilos 3.56
pears 34 kilos 2.46

For reverse sorting, try sort -r data. We can also sort by comparing
specific fields of each line. By default, fields are words separated by one
or more spaces. For example, in order to sort w.r.t. the second column
of the file data, we can use the switch -k 2 (=second field). Furthermore,
we can use the switch -n for numerical sorting:

> sort —k 2 —n data

pears 34 kilos 2.46
bread 62 kilos 0.60
ham 85 kilos 3.56

bananas 100 pieces 1.45
apples 325 boxes 1.18

If we omit the switch -n, the comparison of the lines is performed based
on character sorting of the second field and the result is

> sort —k 2 data
bananas 100 pieces 1.45
apples 325 boxes 1.18

20 CHAPTER 1. THE COMPUTER

pears 34 kilos 2.46
bread 62 kilos 0.60
ham 85 kilos 3.56

The last column contains floating point numbers (not integers). In order
to sort by the values of such numbers we should use the switch -g:

> sort —k 4 —g data

bread 62 kilos 0.60
apples 325 boxes 1.18
bananas 100 pieces 1.45
pears 34 kilos 2.46
ham 85 kilos 3.56

The command grep processes a text file line by line, searching for a
given string of characters. When this string is found anywhere in a line,
this line is printed to the stdout. The command

> grep kilos data

pears 34 kilos 2.46
bread 62 kilos 0.60
ham 85 kilos 3.56

prints each line containing the string “kilos”. If we want to search for all
line not containing the string “kilos”, then we add the switch -v:

> grep —v kilos data
bananas 100 pieces 1.45
apples 325 boxes 1.18

We can use a regular expression for searching a whole family of strings
of characters. These monsters need a full book for discussing them in
detail! But it is not hard to learn how to use some simple forms of
regular expressions. Here are some examples:

> grep “b data
bananas 100 pieces 1.45

bread 62 kilos 0.60
> grep ’0$%’ data
bread 62 kilos 0.60

> grep ’'3[24]° data

1.2. TEXT PROCESSING TOOLS - FILTERS 21

apples 325 boxes 1.18
pears 34 kilos 2.46

The first one, prints each line whose first character is a b. The second
one, prints each line that ends with a 0. The third one, prints each line
contaning the strings 32 or 34.

By far, the strongest tool in our toolbox is the awk program. By
default, awk analyzes a text file line by line. Each word (or field in the
awk jargon) of these lines is stored in a set of variables with names
$1, $2, The variable $0 contains the full line currently processed,
whereas the variable NF counts the number of fields in the current line.
The variable NR counts the number of lines of the file processed so far by
awk.

An awk program can be written in the command line. A set of com-
mands within { ... 7} is executed for each line of input. The constructs
BEGIN{ ... } and END{ ... } contain commands executed, only once,
before and after the processing of the file respectively. For example, the
command

> awk ’{print $1,7total value= 7 ,$2*$4}’ data
bananas total value= 145

apples total value= 383.5

pears total value= 83.64

bread total value= 37.2

ham total value= 302.6

prints the name of the product (st column = $1) and the total value
stored in the warehouse (2nd column = $2) x (4th column = $4). More
examples are given below:

> awk ’'{value += $2*$4}END{print "Total= ”,value}’ data
Total= 951.94
> awk ’{av += $4}END{print “Average Price= ”,av/NR}’ data

Average Price= 1.85
> awk ’{print $242 * sin($4) + exp($4)}’ data

The first one calculates the total value of all products: The processing
of each line results in the increment (+=) of the variable value by the
product of the second and fourth fields. In the end (END{ ... }),
the string Total= is printed, together with the final value of the variable

22 CHAPTER 1. THE COMPUTER

value. This is an easy way for computing the sum of the values calculated
for each line. The second command, calculates and prints an average.
The sum is calculated in each line and stored in the variable av. In the
end, we print the quotient of the sum of all values by the number of
lines that have been processed (NR). The last command shows a (crazy)
mathematical expression based on numerical values found in each line
of the file data: It computes the square of the second field times the sine
of the fourth field plus the exponential of the fourth field.

There is much more potential in the commands presented above.
Reading the documentation and getting experience by using them will
provide you with very strong tools in order to accomplish complicated
tasks.

1.3 Programming with Emacs

For a programmer that spends many hours programming every day, the
environment and the tools available for editing the commands of a large
and complicated program determine, to a large extent, the quality of
her life! An editor edits the contents of a text file, that consists solely of
printable characters. Such editors, available in most Linux environments,
are the programs gedit, vim, pico, nano, zile... They provide basic
functionality such as adding, removing or changing text within a file as
well as more complicated functions, such as copying, pasting, searching
and replacing text etc. There are many functions that are particularly
useful to a programmer, such as detecting and formatting keywords of
a particular programming language, pretty printing, closing scopes etc,
which can be very useful for comfortable programming and for spotting
errors. A very powerful and “knowledgeable” editor, offering many such
functions for several programming languages, is the GNU Emacs editor]].
Emacs is open source software, it is available for free and can be used
in most available operating systems. It is programmablef] and the user

“http://www.gnu.org/software/emacs/ (main site),
http://www.emacswiki.org/ (expert tips), http://en.wikipedia.org/wiki/Emacs
(general info)

*Emacs is written in a dialect of the programming language Lisp, called Elisp. There
is no need of an in-depth knowledge of the language in order to program simple
functions, just see how others are doing it...

1.3. PROGRAMMING WITH EMACS 23

can automate most of her everyday repeated tasks and configure it to her
liking. There is a full interaction with the operating system, in fact Emacs
has been built with the ambition of becoming an operating system. For
example, a programmer can edit a C++ file, compile it, debug it and run
it, everything done with Emacs commands.

1.3.1 Calling Emacs

In the command line type

> emacs &

Note the character & at the end of the line. This makes the particular
command to run in the background. Without it, the shell waits until a
command exits in order to return the prompt.

In a desktop environment, Emacs starts in its own window. For a
quick and dirty editing session, or in the case that a windows environ-
ment is not availableE’], we can run Emacs in a terminal mode. Then, we
omit the & at the end of the line and we run the command

> emacs —nw

The switch —-nw forces Emacs to run in terminal mode.

1.3.2 Interacting with Emacs

We can interact with Emacs in various ways. Newbies will prefer buttons
and menus that offer a simple and intuitive interface. For advanced
usage, however, we recommend that you make an effort to learn the
keyboard shortcuts. There are also thousands of functions available to
be used interactively. They are called from a “command line”, called the
minibuffer in the Emacs jargon.

Keyboard shortcuts are usually combinations of keystrokes that con-
sist of the simultaneous pressing of the Ctrl or Alt keys together with
other keys. Our convention is that a key sequence starting with a C-
means that the characters that follow are keys simultaneously pressed

*Quite handy when we edit files in a remote computer.

24 CHAPTER 1. THE COMPUTER

G EMACS GRS G == =
Fle Edit Optiens Buffers Tools Help

RR== BB RE XD
B i

/\ N\
Save 3
file

'HELP!
Save As
Open a 2)';‘:;:“ dialog Search for
new file e g a string
GhU Emacs is one companent of the GRI/Linux operating system.
You can do basic editing with the menu bar and scroll bar using the
Type Control-1 to begin editing. Copy text
Paste text

To quit a partially entered command, type Control-g. Cut Text
Emacs Guided Tour See http:fAwww .gnu.org/software/emacs/tour/

Useful File menu items:
Exit Emacs (Or type Control-x followed by Control-c)
Fecover Crashed Session Fecover files you were editing before a crash

This is GNU Emacs 22.1.1 [i486-pc-linux-gnu, GTK+ Yersion 2.12.9)
of 2008-05-03 on terranova, modified by Ubuntu

Copyight(C) 2007 Free Sofhware Foundation, Inc.

I an Emacs session crashed recently, type Meta-z recover-session RET
o recover the files you were editing.

For informatien about the GNU Project and its geals, type C-h C-p.

Figure 1.2: The Emacs window in a windows environment. The buttons of very
basic functions found on its toolbar are shown and explained.

with the Ctrl key. A key sequance starting with a M- means that the
characters that follow are keys simultaneously pressed with the Alt keyﬁ.
Some commands have shortcuts consisting of two or more composite
keystrokes. For example by C-x C-c we mean that we have to press
simultaneously the Ctrl key together with x and then press simultane-
ously the Ctrl key together with c. This sequence is a shortcut to the
command that exits Emacs. Another example is C-x 2 which means to
press the Ctrl key together with x and then press only the key 2. This
is a shortcut to the command that splits a window horizontally to two
equal parts.

The most useful shortcuts are M-x (press the A1t key siumutaneously

Actually, M- is the so called Meta key, usually bound to the Alt key. It is also bound
to the Esc and C-[keys. The latter can be our only choices available in dumb terminals.

1.3. PROGRAMMING WITH EMACS 25

-E i L : 4

Fle Edit ‘“iew Terminal Tabs Help

File Edit Options Buffers Tools Minibuf Help

Variables are highlighted
according to Fortran-maode

include.h
intege
COMMON / / ipot
REAL*8 .
COMMON 7 / cosGam Cursor was at line 33
and column 0

COMMON / / mu2,acoeff
COMMON / / NTRAP Name of buffer: toy.f
integer
real*g

real*g .
real*g (JIGEN), Fortran mode
integer
REAL*8
integer
integer Minimuffer with
*200 command
character *200
character *200
C--------- metropolis-------

real*8

M-x save-buffers-kill-emacs

Figure 1.3: Emacs in a non-window mode running on the console. In this figure,
we have typed the command save-buffers-kill-emacs in the minibuffer, a command
that exits Emacs after saving edited data from all buffers. The same command can be
given using the keyboard shortcut C-x C-c. We can see the mode line and the name of
the buffer toy.f written on it, the percentage of the buffer (6%) shown in the window,
the line and columns (33,0) where the point lies and the editing mode which is active
on the buffer (Fortran mode (Fortran), Abbreviation mode (Abbrev), Auto Fill mode

(FilD).

with the x key) and C-g. The first command takes us to the minibuffer
where we can give a command by typing its name. For example, type
M-x and then type save-buffers-kill-emacs in the minibuffer (this will
terminate Emacs). The second one is an “SOS button” that interrupts
anything Emacs does and returns control to the working buffer. This
can be pretty handy when a command hangs or destroys our work and
we need to interrupt it.

The conventions for the mouse events are as follows: With Mouse-1,
Mouse-2 and Mouse-3 we denote a simple click with the left, middle and
right buttons of the mouse respectively. With Drag-Mouse-1 we mean to
press the left button of the mouse and at the same time drag the mouse.

26 CHAPTER 1. THE COMPUTER

[eS|
4
Visit New File... (c-x cf)
Open File...
) (R
Open Directory.. (C-xd) a
Insert File... (C-xi) Emacs Tutorial (c-ht)
Close Emacs Tuterial (choose language)...
Emacs FAQ (c-hcf)
Emacs News (C-hn)
Save As... (Cxcw) Emacs Known Problems (C-h C-e)
(T EdT = Send Bug Report...
Recover Crashed Session 4
e Debian README
5 i 2|
Print Buffer 7] Debian News
.cshre -- jhome/konstant/ Bl EiehrEley
Postscript Print Buffer Paste .emacs -- fhome/konstant/ Search Documel
toyf -- jhomejkonstant/toy/ Describe ©
Postscript Print Buffer (B+Ww) ‘mailre -~ fhome/fkonstant/ Read the Emacs Manual (C-hr)
Select Al (C-x h) wgcratch* More Manuals '
. X e Find Emacs Packages (C-h p)
Spht window (C-x 2) Search b *Customize Group: Emacs* *
; o About Emacs
Replace b *Messages*t *
R e External Packages
ew Frame ‘ x 0T " | | Next Buffer (C-x <C-right=) || | Getting new versions (c-h c-d)
Mew Frame on Display... 3 q
[Erelamerls Previous Buffer (C-x <C-left=) Copying Conditions (c-h c-c)
Select Named Buffer.., (C-xb) Dy (Fn ©7)
Exit Emacs (C-x C-c) Text Properties 3 List All Buffers (C-x C-b) Emacs Psychotherapist

Figure 1.4: The basic menus found in Emacs when run in a desktop environment. We
can see the basic commands and the keyboard shortcut reminders in the parentheses.
E.g. the command File — Visit New File can be given by typing C-x C-f. Note
the commands File — Visit New File (open a file), File—Save (write contents of
a buffer to a file), File—»Exit Emacs, File — Split Window (split window in two),
File—New Frame (open a new Emacs desktop window) and of course the well known
commands Cut, Copy, Paste, Undo from the Edit menu. We can choose different
buffers from the menu Buffers, which contain the contents of other files that we have
opened for editing. We recommend trying the Emacs Tutorial and Read Emacs Manual
in the Help menu.

We summarize the possible ways of giving a command in Emacs with
the following examples that have the same effect: Open a file and put its
contents in a buffer for editing.

¢ By pressing the toolbar button that looks like a white sheet of paper
(see figure [1.2).

* By choosing the File—Visit New File menu entry.
* By typing the keyboard shortcut C-x C-f.

* By typing the name of the command in the minibuffer: M-x find-file

1.3. PROGRAMMING WITH EMACS 27

The number of available commands increases from the top to the bottom
of the above list.

1.3.3 Basic Editing

In order to edit a file, Emacs places the contents of a file in a buffer. Such
a buffer is a chunk of computer memory where the contents of the file
are copied and it is not the file itself. When we make changes to the
contents of a buffer, the file remains intact. For our changes to take effect
and be written to the file, we have to save the buffer. Then, the contents
of the buffer are written back to the file. It is important to understand
the following cycle of events:

e Read a file’s contents to a buffer.
e Edit buffer contents.

e Write (save) buffer’s contents back into the file.

Emacs may have more than one buffers open for editing simultaneously.
By default, the name of the buffer is the same as the name of the file
that is edited, although this is not necessaryf]. The name of a buffer is
written in the modeline of the window of the buffer, as can be seen in
figure [L.3.

If Emacs crashes or exits before we save our edits, it is possible to
recover (part of) them. There is a command M-x recover-file that will
guide us through the necessary recovery steps, or we can look for a file
that has the same name as the buffer we were editing surrounded by two
#. For example, if we were editing the file file.cpp, the automatically
saved changes can be found in the file #file.cpp#. Auto saving is done
periodically by Emacs and its frequency can be controlled by the user.

The point where we insert text while editing is called “the point”.
This is right before the blinking cursorf}. Each buffer has another posi-
tion marked by “the mark”. A point and the mark define a “region”

®The user can change the name of the buffer without affecting the name of the file
it edits. Also, if we open more than one files with the same name, emacs gives each
buffer a unique name. E.g. if we edit more than one files named index.html then the
corresponding buffers are named index.html, index.html<2>, index.html<3>,

“Strictly speaking, the point lies between two characters and not on top of a character.
The cursor lies on the character immediately to the right of the point. A point is assigned

28 CHAPTER 1. THE COMPUTER

in the buffer. This is a part of the text in the buffer where the func-
tions of Emacs can act (e.g. copy, cut, change case, spelling etc.). We
can set the region by setting a point and then press C-SPCf] or give the
command M-x set-mark-command. This defines the current point to be
the mark. Then we can move the cursor to another point which will
define a region together with the mark that we set. Alternatively we can
use Drag-Mouse-1 (hold the left mouse button and drag the mouse) and
mark a region. The mark can be set with Mouse-3, i.e. with a simple
click of the right button of the mouse. Therefore by Mouse-1 at a point
and then Mouse-3 at a different point will set the region between the two
points.

We can open a file in a buffer with the command C-x C-f, and then
by typing its path. If the file already exists, its contents are copied to a
buffer, otherwise a new buffer is created. Then:

* We can browse the buffer’s contents with the Up/Down/Left/Right
arrows. Alternatively, by using the commands C-n, C-p, C-f and
C-b.

o If the buffer is large, we can browse its contents one page at a time
by using the Page Up/Page Dn keys. Alternatively, by using the
commands C-v, M-v.

e Enter text at the points simply by typing it.

* Delete characters before the point by using the Backspace key and
after the point by using the Delete key. The command C-d deletes
a forward character.

* Erase all the characters in a line that lie ahead of the point by using
the command C-k.

* Open a new line by using Enter or C-o.

* Go to the first character of a line by using Home and the last one
by using End. Alternatively, by using the commands C-a and C-e,
respectively.

to every window, therefore a buffer can have multiple points, one for each window that
displays its contents.
*Press the Ctrl and spacebar keys simultanesouly.

1.3. PROGRAMMING WITH EMACS 29

¢ Go to the first character of the buffer with the key C-Home and the
last one with the key C-End. Alternatively, with M-x beginning -of
-buffer and M-x end-of-buffer.

* Jump to any line we want: Type M-x goto-line and then the line
number.

¢ Search for text after the point: Press C-s and then the text you
are looking for. This is an incremental search and the point jumps
immediately to the first string that matches the search. The same
search can be repeated by pressing C-s repeatedely.

When we finish editing (or frequently enough so that we don’t loose
our work due to an unfortunate event), we save the changes in the buffer,
either by pressing the save icon on the toolbar, or by pressing the keys
C-s, or by giving the command M-x save-buffer.

1.3.4 Cut and Paste

Use the instructions below for slightly more advanced editing;:

* Undo! Some of the changes described below can be catastrophic.
Emacs has a great Undo function that keeps in its memory many
of the changes inflicted by our editing commands. By repeatedely
pressing C-/, we undo the changes we made. Alternatively, we
can use C-x u or the menu entry Edit—Undo. Remember that C-g
interrupts any Emacs process currently running in the buffer.

¢ Cut text by using the mouse: Click with Mouse-1 at the point before
the beginning of the text and then Mouse-3 at the point after the
end. A second Mouse-3 and the region is ... gone (in fact it is
written in the “kill ring” and it is available for pasting)!

¢ Cut text by using a keyboard shortcut: Set the mark by C-SPC at the
point before the beginning of the text that you want to cut. Then
move the cursor after the last character of the text that you want to
cut and type C-w.

* Copy text by using the mouse: Drag the mouse Drag-Mouse-1 and
mark the region that you want to copy. Alternatively, Mouse-1 at

30

CHAPTER 1. THE COMPUTER

the point before the beginning of the text and then Mouse-3 at the
point after the end.

Copy text by using a keyboard shortcut: Set the mark at the begin-
ning of the text with C-SPC and then move the cursor after the last
character of the text. Then type M-w.

Pasting text with the mouse: We click the middle buttonf] Mouse-2
at the point that we want to insert the text from the kill ring (the
copied text).

Pasting text with a keyboard shortcut: We move the point to the
desired insertion point and type C-y.

Pasting text from previous copying: A fast choice is the menu entry
Edit—Paste from kill manu and then select from the copied texts.
The keyboard shortcut is to first type C-y and then M-y repeatedly,
until the text that we want is yanked.

Insert the contents of a file: Move the point to the desired place and
type C-x i and the path of the file. Alternatively, give the command
M-x insert-file.

Insert the contents of a buffer: We can insert the contents of a whole
buffer at a point by giving the command M-x insert-buffer.

Replace text: We can replace text interactively with the command
M-x query-replace, then type the string we want to replace, and
then the replacement string. Then, we will be asked whether we
want the change to be made and we can answer by typing y (yes),
n (no), q (quit the replacements). A , (comma) makes only one
replacement and quits (useful if we know that this is the last change
that we want to make). If we are confident, we can change all
string in a buffer, no questions asked, by giving the command M-x
replace-string.

Change case: We can change the case in the words of a region with
the commands M-x upcase-region, M-x capitalize-region and
M-x downcase-region. Try it.

If it is a two button mouse, try clicking the left and right buttons simultaneously.

1.3. PROGRAMMING WITH EMACS 31

We note that cutting and pasting can be made between different windows
of the same or different buffers.

1.3.5 Windows

Sometimes it is very convenient to edit one or more different buffers in
two or more windows. The term “windows” in Emacs refers to regions
of the same Emacs desktop window. In fact, a desktop window running
an Emacs session is referred to as a frame in the Emacs jargon. Emacs
can split a frame in two or more windows, horizontally or/and vertically.
Study figure on page B3 for details. We can also open a new frame
and edit several buffers simultaneouslyf]. We can manipulate windows
and frames as follows:

* Position the point at the center of the window and clear the screen
from garbage: C-1 (careful: 1 not 1).

¢ Split a window in two, horizontally: C-x 2.
¢ Split a window in two, vertically: C-x 3.

¢ Delete all other windows (remain only with the current one): C-x
1.

¢ Delete the current windows (the others remain): C-x 0.
e Move the cursor to the other window: Mouse-1 or C-x o.

¢ Change the size of window: Use Drag-Mouse-1 on the line sepa-
rating two windows (the mode line). Use C-~, C-} for making a
change of the horizontal/vertical size of a window respectively.

e Create a new frame: C-x 5 2.
e Delete a frame: C-x 5 0.

e Move the cursor to a different frame: With Mouse-1 or with C-x 5
0.

“Be careful not to start a new Emacs session each time that all you need is a new
frame. A new Emacs process takes time to start, binds computer resources and does
not communicate with a different Emacs process.

32

CHAPTER 1. THE COMPUTER

You can have many windows in a dumb terminal. This is a blessing
when a dekstop environment is not available. Of course, in that case you
cannot have many frames.

1.3.6 Files and Buffers

Open a file: C-x C-f or M-x find-file.

Save a buffer: C-x C-s or M-x save buffer. With C-x C-c or
M-x save-buffers-kill-emacs we can also exit Emacs. From the
menu: File—Save. From the toolbar: click on the save icon.

Save buffer contents to a different file; C-x C-w or M-x write-file.
From the menu: File—Save As. From the toolbar: click on the
“save as’ icon.

Save all buffers: C-x s or M-x save-some-buffers.
Connect a buffer to a different file: M-x set-visited-filename.
Kill a buffer: C-x k.

Change the buffer of the current window: C-x b. Also, use the
menu Buffers, then choose the name of the buffer.

Show the list of all buffers: C-x C-b. From the menu: Buffers
— List All Buffers. By typing Enter next to the name of the
buffer, we make it appear in the window. There are several buffer
administration commands. Learn about them by typing C-h m when
the cursor is in the Bufer List window.

Recover data from an edited buffer: If Emacs crashed, do not de-
spair. Start a new Emacs and type M-x recover-file and follow
the instructions. The command M-x recover-session recovers all
unsaved buffers.

Backup files: When you save a buffer, the previous contents of the
file become a backup file. This is a file whose path is the same as
the original’s file with a ~ appended in the end. For example a
file test.cpp will have as a backup the file test.cpp”. Emacs has

1.3. PROGRAMMING WITH EMACS 33

version control, and you can configure it to keep as many versions
of your edits as you want.

* Directory browsing and directory administration commands: C-x
d or M-x dired. You can act on the files of a directory (open,
delete, rename, copy etc) by giving appropriate commands. When
the cursor is in the dired window, type C-h m to read the relevant
documentation.

1.3.7 Modes

Each buffer can be in different modes. Each mode may activate different
commands or editing environment. For example each mode can color
keywords relevant to the mode and/or bind keys to different commands.
There exist major modes, and a buffer can be in only one of them. There
are also minor modes, and a buffer can be in one or more of them. Emacs
activates major and minor modes by default for each file. This usually
depends on the filename but there are also other ways to control this. The
user can change both major and minor modes at will, using appropriate
commands.

Active modes are shown in a parenthesis on the mode line (see figures

and [L.5.

® M-x c++-mode: This mode is of special interest in this book since
we will edit a lot of C++ code. We need it activated in buffers
that contain a C++ program and its most useful characteristics are
automatic code alignment by pressing the key TAB, the coloring of
C++ statements, variables and other structural constructs (classes, if
statements, for loops, variable declarations, comments etc). Another
interesting function is the one that comments out a whole region of
code, as well as the inverse function.

* M-x c-mode: For files containing programs written in the C lan-
guage. Related modes are the java-mode, perl-mode, awk-mode,
python-mode, makefile-mode, octave-mode, gnuplot-mode and
others.

¢ latex-mode: For files containing KTEX text formatting commands.

e text-mode: For editing simple text files (.txt).

34

CHAPTER 1. THE COMPUTER

e fundamental-mode: The basic mode, when one that fits better doesn’t

exist...

Some interesting minor modes are:

® M-x auto-fill-mode: When a line becomes too long, it is wrapped

automatically. A related command to do that for the whole region
is M-x fill-region, and for a paragraph M-x fill-paragraph.

M-x overwite-mode: Instead of inserting characters at the point,
overwrite the existing ones. By giving the command several times,
we toggle between activating and deactivating the mode.

M-x read-only mode: When visiting a file with valuable data that
we don’t want to change by mistake, we can activate this mode so
that changes will not be allowed by Emacs. When we open a file
with the command C-x C-r or M-x find-file-read-only this mode
is activated. We can toggle this mode on and off with the command
C-x C-q (M-x toggle-read-only). See the mode line of the buffer
jack.c in figure which contains a string %%. By clicking on the
%% we can toggle the read-only mode on and off.

flyspell-mode: Spell checking as we type.

font-lock-mode: Colors the structural elements of the buffer which
are defined by the major mode (e.g. the commands of a C++ pro-
gram).

In a desktop environment, we can choose modes from the menu of

the mode line. By clicking with Mouse-3 on the name of a mode we are
offered options for (de)activating minor modes. With a Mouse-1 we can
(de)activate the read-only mode with a click on :%7% or :-- respectively.

See figure [I.5.

1.3.8 Emacs Help

Emacs’ documentation is impressive. For newbies, we recommend to
follow the mini course offered by the Emacs tutorial. You can start the
tutorial by typing C-h t or select Help — Emacs Tutorial from the
menu. Enjoy... The Emacs man page (give the man emacs command in

1.3. PROGRAMMING WITH EMACS 35

the command line) will give you a summary of the basic options when
calling Emacs from the command line.

A quite detailed manual can be found in the Emacs info pagesf.
Using info needs some training, but using the Emacs interface is quite
intuitive and similar to using a web browser. Type the command C-h r
(or choose Help—Emacs Tutorial from the menu) and you will open the
front page of the emacs manual in a new window. By using the keys SPC
and Backspace we can read the documentation page by page. When you
find a link (similar to web page hyperlinks), you can click on it in order
to open to read the topic it refers to. Using the navigation icons on the
toolbar, you can go to the previous or to the next pages, go up one level
etc. There are commands that can be given by typing single characters.
For example, type d in order to jump to the main info directory. There
you can find all the available manuals in the info system installed on
your computer. Type g (emacs) and go to the top page of the Emacs
manual. Type g (info) and read the info manual.

Emacs is structured in an intuitive and user friendly way. You will
learn a lot from the names of the commands: Almost all names of Emacs
commands consist of whole words, separated by a hyphen “-”, which
almost form a full sentence. These make them quite long sometimes,
but by using auto completion of their names this does not pose a grave
problem.

* auto completion: The names of the commands are auto completed
by typing a TAB one or more times. E.g., type M-x in order to go to
the minibuffer. Type capi[TAB] and the command autocompletes
to capitalize-. By typing [TAB] for a second time, a new window
opens and offers the options for completing to two possible com-
mands: capitalize-region and capitalize-word. Type an extra
r [TAB] and the command auto completes to the only possible choice
capitalize-region. You can see all the commands that start with
an s by typing M-x s[TAB] [TAB]. Sure, there are many... Click on
the *Completions* buffer and browse the possibilities. A lot will
become clear just by reading the names of the commands. By typ-
ing M-x [TAB] [TAB], all available commands will appear in your
buffer!

If you prefer books in the form of PDF visit the page www.gnu.org/software/emacs
and click on Documentation. You will find a 600 page book that has almost everything!

36

CHAPTER 1. THE COMPUTER

keyboard shortcuts: If you don’t remember what happens when
you type C-s, no problem: Type C-h k and then the ... forgotten key
sequence C-s. Conversely, have you forgotten what is the keyboard
shortcut of the command save-buffer? Type C-h w and then the
command.

functions: Are you looking for a command, e.g. save-something
-I-forgot? Type C-h f and then save-[TAB] in order to browse
over different choices. Use Mouse-2 in order to select the command
you are interested in, or type and complete the rest of its name (you
may use [TAB] again). Read about the function in the *Help* buffer
that opens.

variables: Do the same after typing C-h v in order to see a vari-
able’s value and documentation.

command apropos: Have you forgotten the exact name of a com-
mand? No problem... Type C-h a and a keyword. All commands
related to the keyword you typed will appear in a buffer. Use C-h
d for even more information.

modes: When in a buffer, type C-h m and read information about
the active modes of the buffer.

info: Type C-h i

Have you forgotten everything mentioned above? Just type C-h ?

1.3.9 Emacs Customization

You can customize everything in Emacs. From key bindings to program-
ming your own functions in the Elisp language. The most common way
for a user to customize her Emacs sessions, is to put all her customization
commands in the file ~/.emacs in her home directory. Emacs reads and
executes all these commands just before starting a session. Such a .emacs
file is given below:

; Define F1 key to save the buffer
(global-set-key [f1] >save-buffer)

1.4. THE C++ PROGRAMMING LANGUAGE 37

; Define Control—-c s to save the buffer

(global-set-key "\C—cs” ’save-some-buffers)

; Define Meta—s (Alt—s) to interactively search forward
(global-set-key "\M-s” ’isearch-forward)

; Define M—x is to interactively search forward
(defalias ’is ’isearch-forward)

; Define M—x cm to set c++—mode for the buffer
(defun cm() (interactive) (c++—mode))

; Define M—x sign to sign my name

(defun sign() (interactive) (imsert "K. N. Anagnostopoulos”))

Everything after a ; is a comment. Functions/commands are enclosed
in parentheses. The first three ones bind the keys F1, C-c s and M-s to
the commands save-buffer, save-some-buffers and isearch-forward
respectively. The next one defines an alias of a command. This means
that, when we give the command M-x is in the minibuffer, then the
command isearch-forward will be executed. The last two commands
are the definitions of the functions (fm) and (sign), which can be called
interactively from the minibuffer.

For more complicated examples google “emacs .emacs file” and you
will see other users’ . emacs files. You may also customize Emacs from the
menu commands Options—Customize Emacs. For learning the Elisp lan-
guage, you can read the manual “Emacs Lisp Reference Manual” found
at the address
www . gnu.org/software/emacs/manual/elisp.html

1.4 The C++ Programming Language

In this section, we give a very basic introduction to the C++ programming
language. This is not a systematic exposition and you are expected to
learn what is needed in this book by example. So, please, if you have
not already done it, get in front of a computer and do what you read.
You can find many good tutorials and books introducing C++ in a more
complete way in the bibliography.

1.4.1 The Foundation

The first program that one writes when learning a new programming
language is the “Hello World!” program. This is the program that prints

http://www.gnu.org/software/emacs/manual/elisp.html

38 CHAPTER 1. THE COMPUTER

“Hello World!” on your screen:

#include <iostream >
using namespace std;

int main() {

// This is a comment.
cout << "Hello World!\n”;

}

Commands, or statements, in C++ are strings of characters separated by
blanks (“words”) and end with a semicolon (;). We can put more than
one command on each line by separating them with a semicolon.

Everything after two slashes (//) is a comment. Proliferation of com-
ments is necessary for documenting our code. Good documentation of
our code is an integral part of programming. If we plan to have our
code read by others (or by us) at a later time, we have to make sure to
explain in detail what each line is supposed to do. You and your col-
laborators will save a lot of time in the process of debugging, improving
and extending your code.

The first line of the code shown above is a preprocessor directive. These
lines start with a # and are interpreted by a separate program, the pre-
processor. The #include directive, inserts the contents of a file replacing
the line where the directive is. This acts like an editor! Actually, the code
that will be compiled is not the one shown above, but the result of adding
the contents of a file whose name is iostreanf]. iostream is an example
of a header file that has many definitions of functions and symbols used
by the program. The particular header has the necessary definitions in
order to perform standard input and standard output operations.

The execution of a C++ program starts by calling a function whose
name is main(). Therefore, the line int main(){ shows how to actually
define a function in C++. Its name is the word before the parentheses ()
and the keyword int specifies that the function returns a value of integer

*The path to the file is determined by the compiler. If you are curious to see the
file, search for it with the command locate iostream. In order to see the result of
adding the contents of the file (and, actually several other files added by preprocessor
directives in iostream), call the preprocessor with the command cpp hello.cpp

1.4. THE C++ PROGRAMMING LANGUAGE 39

typef]. Within the parentheses placed after the name of the function, we

put the arguments that we pass to the function. In our case the parentheses

contain nothing, showing how to define a function without arguments.
The curly brackets { ... } define the scope or the body of the function

and contain the statements to be executed when the function is called.
The line

cout << ”Hello World!\n”;

is the only line that contains an executable statement that actually does
something. Notice that it ends with a semicolon. This statement performs
an output operation printing a string to the standard output. The sentence
Hello World!\n is a constant string and contains a sequence of printable
characters enclosed in double quotes. The last character \n is a newline
character, that prints a new line to the stdout.

cout identifies the standard character output device, which gives ac-
cess to the stdout. The characters << indicate that we write to cout the
expression to the right. In order to make cout accessible to our program,
we need both the inclusion of the header file iostream and the statement
using namespace stdE‘].

Statements in C++ end with a semicolon. Splitting them over a num-
ber of lines is only a matter of making the code legible. Therefore, the
following parts of the code have equivalent effect as the one written
above:

int main()

{
cout <K
”Hello World!\n”;

**The value returned by main() is useless within our program, but it is used by the
operating system in order to inform us about the successful (or not) termination of the
program. Of course, functions returning values is a very useful feature in general!

*'Omitting using namespace std does not make cout inaccessible. One can use its
“full name” std::cout instead. Remove the statement and try it. cout is part of the
C++ Standard Library. All elements of the library belong to the std namespace and their
names can be prefixed by std:: Using the using namespace std statement, the prefix
may be omitted.

40 CHAPTER 1. THE COMPUTER

int main() {cout <<”Hello World!\n”;}

Finally notice that, for C++, uppercase and lowercase characters are
different. Therefore main(), Main() and MAIN() are names of different
functions.

In order to execute the commands in a program, it is necessary to com-
pile it. This is a job done by a program called the compiler that translates
the human language programming statements into binary commands
that can be loaded to the computer memory for execution. There are
many C++ compilers available, and you should learn which compilers
are available for use in your computing environment. Typical names for
C++ compilers are g++, c++, icc, You should find out which
compiler is best suited for your program and spend time reading its
documentation carefully. It is important to learn how to use a new com-
piler so that you can finely tune it to optimize the performance of your
program.

We are going to use the open source and freely available compiler
g++, which can be installed on most popular operating systemsf]. The
compilation command is:

> g++ hello.cpp —o hello

The extension .cpp to the file name hello.cpp is important and instructs
the compiler that the file contains source code in C++. Use your editor
and edit a file with the name hello.cpp with the program shown above
before executing the above command.

The switch -o defines the name of the executable file, which in our
case is hello. If the compilation is successful, the program runs with the
command:

> ./hello
Hello world!

The ./ is not a special symbol for running programs. The dot is the
current working directory and ./hello is the full path to the file hello.

g++ is a front end to the GNU collection of compilers gcc. By installing gcc, you
obtain a collection of compilers for several languages, like C, C++, Fortran, Java and
others. See http://gcc.gnu.org/

http://gcc.gnu.org/

1.4. THE C++ PROGRAMMING LANGUAGE 41

Now, we will try a simple calculation. Given the radius of a circle we
will compute its length and area. The program can be found in the file
area_01.cpp:

#include <iostream >
using namespace std;

int main() {
double PI
double R

3.1415926535897932;
4.

’

cout < "Perimeter= 7 < 2.0*PI*R << "\n”;
cout << "7 Area= 7 <L PI*R*R <L "\n”;

}

The first two statements in main () declare the values of the variables PI and
R. These variables are of type double, which are floating point numbersf].
The following two commands have two effects: Computing the length
27R and the area wR? of the circle and printing the results. The ex-
pressions 2.0*PI*R and PI*R+R are evaluated before being printed to the
stdout. Note the explicit decimal points at the constants 2.0 and 4.0.
If we write 2 or 4 instead, then these are going to be constants of the
int type and by using them the wrong way we may obtain surprising
results[|. We compile and run the program with the commands:

> g++ area_Ol.cpp —o area
> ./area

Perimeter= 25.1327

Area= 50.2655

Now we will try a process that repeats itself for many times. We will
calculate the length and area of 10 circles of different radii R; = 1.28 + 1,

*Don’t confuse double variables with the real numbers. double variables take values
that are finite approximations of real numbers and take values that are a subset of
the rational numbers. This approximation becomes better by increasing the amount
of memory allocated to store them. In most computing environments, doubles are
allocated 8 bytes of memory, in which case they approximate real numbers with, more
or less, 17 significant digits.

*Try adding the command cout << 2/4 << 2.0/4.0; and check the results.

42 CHAPTER 1. THE COMPUTER

t=1,2,...,10. We will store the values of the radii in an array R[10] of
the double type. The code can be found in the file area_02.cpp:

#include <jiostream >
using namespace std;

int main() {
double PI = 3.1415926535897932;
double R[10];
double area, perimeter;
int i;

R[O] = 2.18;
for(i=1;i<10;i++){

R[i] = R[i—-1] + 1.0;
}

for (i=0;i<10;i++){
perimeter = 2.0*PI*R[i];
area = PI*R[i]*R[i];
cout << (i+1) << ”) R= " < R[i] << ” perimeter= 7
< perimeter < ’'\n’;
cout << (i+1) < 7) R= 7 < R[i] & 7 area = 7
<L area <K< \n’;

}

The declaration double R[10] defines an array of length 10. This way,
the elements of the array are referred to by an index that takes values
from O to 9. For example, R[0] is the first, R[3] is the fourth and R[9]
is the last element of the array.

Between the lines

for(i=1;i<10;i++){

}

we can write commands that are repeatedly executed while the int vari-
able i takes values from 1 to 9 with increasing step equal to 1. The way
it works is the following: In the round brackets after the keyword for,
there exist three statements separated by semicolons. The first, i=1, is

1.4. THE C++ PROGRAMMING LANGUAGE 43

the statement executed once before the loop starts. The second, i<10,
is a statement that is evaluated each time before the loop repeats itself.
If it is true, then the statements in the loop are executed. If it is false,
the control of the program is transferred after the end of the loop. The
last statement, i++, is evaluated each time after the last statement in the
loop has been executed. The operator ++ is the increment operator, and
its effect is equivalent to the statement:

The value of i is increased by one. The command:

R[i] = R[i—-1] + 1.0;

defines the i-th radius from the value R[i-1]. For the loop to work
correctly, we must define the initial value of R[0], otherwiseﬁ R[0]=0.0.
The second loop uses the defined R-values in order to do the computation
and print of the results.

Now we will write an interactive version of the program. Instead of
hard coding the values of the radii, we will interact with the user asking
her to give her own values. The program will read the 10 values of the
radii from the standard input (stdin). We will also see how to write
the results directly to a file instead of the standard output (stdout). The
program can be found in the file area_03. cpp:

#include <iostream >
#include <fstream >
using namespace std;

int main(){
const int N = 10;
const double PI 3.1415926535897932;
double R[N];
double area,perimeter;
int i,

for (i=0;i<N;i++){
cout < ”Enter radius of circle: 7;

Arrays in C++ are zero-initialized.

44 CHAPTER 1. THE COMPUTER

cin >> R[i];
cout << 7i= 7 <L (i+1) << 7 R(i)= " << R[i] << '\n’;
}

ofstream myfile (”AREA.DAT”);
for (i=0;i<N;i++){
perimeter = 2.0*PI*R[i];

area = PI*R[i]*R[i];
myfile << (i+1) << 7) R= 7 < R[i]

<L 7 perimeter= " < perimeter < ’'\n’;
myfile << (i+1) << 7) R= " < R[i]

<L 7 area = << area <K< \n’;

}

myfile.close();

}

In the above program, the size of the array R is defined by a const int. A
const declares a variable to be a parameter whose value does not change
during the execution of the program and, if it is of int type, it can be
used to declare the size of an array.

The array elements R[i] are read using the command:

cin >> R[il];

cin is the standard input stream, the same way that cout is the standard
output streamf]. We read input using the >> operator, which indicates
that input is written fo the variable on the right.

In order to interact with ordinary files, we need to include the header

#include <fstream >

In this header, the C++ class ofstream is defined and it can be used in
order to write to files (output stream). An object in this class, like myfile,
is defined (“instantiated”) by the statement:

ofstream myfile (”AREA.DAT”);

%And cerr is the standard error stream.

1.4. THE C++ PROGRAMMING LANGUAGE 45

This object’s constructor is called by placing the parentheses ("AREA.DAT"),
and then the output stream myfile is directed to the file AREA.DAT. Then
we can write output to the file the same way we have already done with
cout:

myfile << (i+1) << 7) R= 7 < R[i]
< 7 perimeter= 7 < perimeter << '\n’;

When we are done writing to the file, we can close the stream with the
statement:

myfile.close();

Reading from files is done in a similar way by using the class ifstream
instead of ofstream.

The next step will be to learn how to define and use functions. The
program below shows how to define a function area_of_circle(), which
computes the length and area of a circle of given radius. The following
program can be found in the file area_04.cpp:

#include <iostream >
#include <fstream >
using namespace std;

const double PI = 3.1415926535897932;
void area of circle(const double& R, double& L, double& A);

int main(){
const int N = 10;
double R[N];
double area,perimeter;
int i;

for(i=0;i<N;i++){
cout < "Enter radius of circle:
cin >> R[i];
cout << 7i= "7 < (i41) << 7 R(i)= 7 K R[i] K "\n’;
}

.,
b

ofstream myfile (”AREA.DAT”);

46 CHAPTER 1. THE COMPUTER

for (i=0;i<N;i++){
area_of_circle(R[i],perimeter, area);
myfile << (i+1) << 7) R= 7 < R[i] < 7 perimeter= "
<< perimeter < ’'\n’;
myfile << (i+1) << 7) R= 7 < R[i] < 7 area =7
<L area < ’\n’;
}

myfile.close();

}
/]
void area_of_circle(const double& R, double& L, double& A){
L = 2.0¥PI*R;
A = PI*R*R;

}

The calculation of the length and the area of the circle is performed by
the function

area_of_circle(R[i],perimeter, area);

Calling a function, transfers the control of the program to the statements
within the body of the function. The above function has arguments (R[i],
perimeter, area). The argument R[i] is intended to be only an input
variable whose value is not going to change during the calculation. The
arguments perimeter and area are intended for output. Upon return of
the function to the main program, they store the result of the compu-
tation. The user of a function must learn how to use its arguments in
order to be able to call it in her program. These must be documented
carefully by the programmer of the function.

In order to use a function, we need to declare it the same way we do
with variables or, as we say, to provide its prototype. The prototype of a
function can be declared without providing the function’s definition. We
may provide just enough details that determine the types of its arguments
and the value returned. In our program this is done on the line:

void area_of circle(const double& R, double& L, double& A);

This is the same syntax used later in the definition of the function, but
replacing the body of the function with a semicolon. The argument list

1.4. THE C++ PROGRAMMING LANGUAGE 47

does not need to include the argument names, only their types. We
could have also used the following line in order to declare the function’s
prototype:

void area of circle(const double& , double& ., double&);

We could also have used different names for the arguments, if we wished
so. Including the names is a matter of style that improves legibility of
the code.

The argument R is intended to be left unchanged during the function
execution. This is why we used the keyword const in its declaration.
The arguments L and R, however, will return a different value to the
calling program. This is why const is not used for them.

The actual program executed by the function is between the lines:

void area_of_circle(const double& R, double& L, double& A){
2.0*PI*R;
PI*R*R;

L
A
}

The type of the value returned by a function is declared by the keyword
before its name. In our case, this is void which declares that the function
does not return a value.

The arguments (R,L,A) must be declared in the function and need
not have the same names as the ones that we use when we call it. All
arguments are declared to be of type double. The character & indicates
that they are passed to the function by reference. This makes possible to
change their values from within the function.

If & is omitted, then the arguments will be passed by walue and a
statement like L = 2.0*%PI*R will not change the value of the variable
passed by the calling program. This happens because, in this case, only
the value of the variable L of the calling program is copied to a local variable
which is used only within the function. This is important to understand
and you are encouraged to run the program with and without the & and
check the difference in the computed results.

The names of variables in a function are only valid within the scope
of the function, i.e. between the curly brackets that contain the body of
the function. Therefore the variable const int N is valid only within the

48 CHAPTER 1. THE COMPUTER

scope of main(). You may use any name you like, even if it is already
used outside the scope of the function. The names of arguments need
not be the same as the ones used in the calling program. Only their types
have to match.

Variables in the global scope are accessible by all functions in the same
filef]. An example of such a variable is PI, which is accessible by main (),
as well as by area_of_circle().

We summarize all of the above in a program trionymo.cpp, which
computes the roots of a second degree polynomial:

// Program to compute roots of a 2nd order polynomial
// Tasks: Input from user ,logical statements,

// use of functions, exit

/]

// Tests: a,b,ec=1 2 3 D= -8

// a,b,c= 1 -8 16 D= 0 SHE 4

// a,b,c=1 -1 -2 D= 9. xi= 2. x2= —1.
// a,b,c= 2.3 —2.99 —-16.422 x1= 3.4 x2= —-2.1

#include <iostream >
#include <cstdlib >
#include <cmath>
using namespace std;

double Discriminant(double a, double b, double c);
void roots(double a, double b, double c, double& x1,
double& x2);

int main() {
double a,b,c,D;
double x1,x2;
cout <K "Enter a,b,c: 7;
cin >> a >> b >> c;
cout < a <7 7 KLKbKL”7T T KT T '\n;

// Test if we have a well defined polynomial of 2nd degree:
if(a == 0.0){

¥"If the code is spread over multiple files, then all files must use the keyword external
in order to make the variable accessible to the functions that they contain. In one of the
files, the variable must be defined without the word external. More on that later...

1.4. THE C++ PROGRAMMING LANGUAGE

cerr < "Trionymo: a=0\n";
exit (1) ;

}

// Compute the discriminant
D = Discriminant(a,b,c);
cout < ”"Discriminant: D= 7 < D < ’\n’;

// Compute the roots in each case: D>0, D=0, DKO (no roots)
if (D> 0.0) {

roots(a,b,c,xl,x2);

cout << "Roots: xl= 7 K x1 <K 7 x2= 7K x2 <K '\n’;
1
else if(D == 0.0) {

roots(a,b,c,x1,x2);

cout << ”Double Root: x1= 7" <K x1 <K ’\n’;
}
else {

cout << "No real roots\n”;

exit (1)

}

}
/1
// This is the function that computes the discriminant

// A function returns a value. This value is returned using
// the return statement

//

double Discriminant(double a,double b,double c){
return b * b — 4.0 * a * c;

}

//

// The function that computes the roots.
// a.,b.,c are passed by value: Their values cannot change

// within the function

/] x1.,x2 are passed by reference: Their values DO change
// within the function

/1

void roots(double a,double b,double c, double& x1,
double& x2){
double D;

D = Discriminant(a,b,c);
if (D >= 0.0){
D = sqrt(D);

49

50 CHAPTER 1. THE COMPUTER

}else {
cerr <L ”roots: Sorry, cannot compute roots, D<0="
K DKL '\n’;
}
x1 (—b + D)/(2.0*%a);

x2 (-=b — D)/(2.0*a);

}

The program reads the coefficients of the polynomial az? 4+ bx + c. After
a check whether a # 0, it computes the discriminant D = b* — 4ac by
calling the Discriminant(a,b,c).

The type of the value returned must be declared at the function’s

prototype

double Discriminant(double a, double b, double c);

and at the function’s definition

double Discriminant(double a,double b,double c){
return b * b — 4.0 * a * c;

}

The value returned to the calling program is the value of the expression
given as an argument to the return statement. return has also the effect
of transferring the control of the program back to the calling statement.

1.5 Gnuplot

Plotting data is an indispensable tool for their qualitative, but also quanti-
tative, analysis. Gnuplot is a high quality, open source, plotting program
that can be used for generating publication quality plots, as well as for
heavy duty analysis of a large amount of scientific data. Its great ad-
vantage is the possibility to use it from the command line, as well as
from shell scripts and other programs. Gnuplot is programmable and it
is possible to call external programs in order manipulate data and cre-
ate complicated plots. There are many mathematical functions built in
gnuplot and a fit command for non linear fitting of data. There exist

1.5. GNUPLOT 51

interactive terminals where the user can transform a plot by using the
mouse and keyboard commands.

This section is brief and only the features, necessary for the fol-
lowing chapters, are discussed. For more information visit the offi-
cial page of gnuplot http://gnuplot.info. Try the rich demo gallery
at http://gnuplot.info/screenshots/, where you can find the type of
graph that you want to create and obtain an easy to use recipe for it. The
book [[16] is an excellent place to look for many of gnuplot’s secretsf.

You can start a gnuplot session with the gnuplot command:

> gnuplot

GNUPLOT
Version X.XX

The gnuplot FAQ is available from www.gnuplot.info/faq/

gnuplot>

There is a welcome message and then a prompt gnuplot> is issued wait-
ing for your command. Type a command an press [Enter]. Type quit
in order to quit the program. In the following, when we show a prompt
gnuplot>, it is assumed that the command after the prompt is executed
from within gnuplot.

Plotting a function is extremely easy. Use the command plot and x
as the independent variable of the functionf}. The command

gnuplot> plot x

plots the function y = f(z) = x which is a straight line with slope 1. In
order to plot many functions simultaneously, you can write all of them
in one line:

gnuplot> plot [—5:5][—2:4] x, x**2, sin(x),besjO(x)

*A the time of the writing of this book, there was a very nice site
www.gnuplotting.org which shows how to create many beautiful and complicated
plots.

**You can change the symbol of the independent variable. For example, the command
set dummy t sets the independent variable to be t.

http://gnuplot.info/
http://gnuplot.info/screenshots/
www.gnuplotting.org

52 CHAPTER 1. THE COMPUTER

The above command plots the functions z, 2%, sin z and Jy(z). Within the
square brackets [:], we set the limits of the z and y axes, respectively. The
bracket [-5:5] sets —5 < x < 5 and the bracket [-2:4] sets —2 < y < 4.
You may leave the job of setting such limits to gnuplot, by omitting some,
or all of them, from the respective positions in the brackets. For example,
typing [1:][:5] changes the lower and upper limits of z and y and leaves
the upper and lower limits unchangedf|.

In order to plot data points (x;,;), we can read their values from files.
Assume that a file data has the following numbers recorded in it:

x vyl y2
0.5 1.0 0.779
1.0 2.0 0.607
1.5 3.0 0.472
2.0 4.0 0.368
2.5 5.0 0.287
3.0 6.0 0.223

The first line is taken by gnuplot as a comment line, since it begins with
a #. In fact, gnuplot ignores everything after a #. In order to plot the
second column as a function of the first, type the command:

gnuplot> plot “data” using 1:2 with points

The name of the file is within double quotes. After the keyword using,
we instruct gnuplot which columns to use as the z and y coordinates,
respectively. The keywords with points instructs gnuplot to add each
pair (z;,y;) to the plot with points.

The command

gnuplot> plot “data” using 1:3 with lines

““By default, the = and y ranges are determined automatically. In order to force them
to be automatic, you can insert a * in the brackets at the corresponding position(s). For
example plot [1:%] [*:5] sets the upper and lower limits of x and y to be determined
automatically.

1.5. GNUPLOT 53

plots the third column as a function of the first, and the keywords with
lines instruct gnuplot to connect each pair (x;,y;) with a straight line
segment.

We can combine several plots together in one plot:

gnuplot> plot “data” using 1:3 with points, exp(—0.5*x)
gnuplot> replot “data” using 1:2
gnuplot> replot 2*x

The first line plots the 1st and 3rd columns in the file data together with
the function e /2., The second line adds the plot of the 1st and 2nd
columns in the file data and the third line adds the plot of the function
2.

There are many powerful ways to use the keyword using. Instead of
column numbers, we can put mathematical expressions enclosed inside
brackets, like using (...):(...). Gnuplot evaluates each expression
within the brackets and plots the result. In these expressions, the values
of each column in the file data are represented as in the awk language. $i
are variables that expand to the number read from columns i=1,2,3,
Here are some examples:

gnuplot> plot “data” using 1:($2*sin($1)*$3) with points
gnuplot> replot 2*x*sin(x)*exp(—x/2)

The first line plots the 1st column of the file data together with the
value y;sin(z;)z;, where y;, ; and z; are the numbers in the 2nd, 1st and
3rd columns respectively. The second line adds the plot of the function
27 sin(x)e /2,

gnuplot> plot “data” using (log($1)):(log($2**2))
gnuplot> replot 2*x+log(4)

The first line plots the logarithm of the 1st column together with the
logarithm of the square of the 2nd column.

We can plot the data written to the standard output of any command.
Assume that there is a program called area that prints the perimeter and
area of a circle to the stdout in the form shown below:

54 CHAPTER 1. THE COMPUTER

> ./area

R= 3.280000 area= 33.79851
R= 6.280000 area= 123.8994
R= 5.280000 area= 87.58257
R= 4.280000 area= 57.54895

The interesting data is at the second and fourth columns. These can be
plotted directly with the gnuplot command:

gnuplot> plot "< ./area” using 2:4

All we have to do is to type the full command after the < within the
double quotes. We can create complicated filters using pipes as in the
following example:

gnuplot> plot \
7 ./arealsort —g —k 2lawk ’{print log($2).,log($4)} " \
using 1:2

The filter produces data to the stdout, by combining the action of the
commands area, sort and awk. The data printed by the last program is
in two columns and we plot the results using 1:2.

In order to save plots in files, we have to change the terminal that gnu-
plot outputs the plots. Gnuplot can produce plots in several languages
(e.g. PDF, postscript, SVG, IXTEX, jpeg, png, gif, etc), which can be inter-
preted and rendered by external programs. By redirecting the output to
a file, we can save the plot to the hard disk. For example:

gnuplot> plot “data” using 1:3
gnuplot> set terminal jpeg
gnuplot> set output “data.jpg
gnuplot> replot

gnuplot> set output

gnuplot> set terminal qt

29

The first line makes the plot as usual. The second one sets the output
to be in the JPEG format and the third one sets the name of the file to
which the plot will be saved. The fourth lines repeats all the previous
plotting commands and the fifth one closes the file data. jpg. The last line
chooses the interactive terminal qt to be the output of the next plot. High

1.5. GNUPLOT 55

quality images are usually saved in the PDF, encapsulated postcript or
SVG format. Use set terminal pdf,postscript eps or svg, respectively.
And now a few words for 3-dimensional (3d) plotting. The next
example uses the command splot in order to make a 3d plot of the
function f(z,y) = e * ¥, After you make the plot, you can use the
mouse in order to rotate it and view it from a different perspective:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> set size ratio 1

gnuplot> set isosamples 50

gnuplot> splot [—2:2][—2:2] exp(—x**2—y**2)

If you have data in the form (z;,y;, z;) and you want to create a plot
of z; = f(z;,y;), write the data in a file, like in the following example:

-1 —1 2.000
-1 0 1.000
-1 1 2.000
0 -1 1.000
0 0 0.000
0 1 1.000
1 —1 2.000
1 0 1.000
1 1 2.000

Note the empty line that follows the change of the value of the first
column. If the name of the file is data3, then you can plot the data with
the commands:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> set size ratio 1
gnuplot> splot “data3” with lines

We close this section with a few words on parametric plots. A para-
metric plot on the plane (2-dimensions) is a curve (z(t),y(t)), where ¢
is a parameter. A parametric plot in space (3-dimensions) is a surface
(x(u,v) ,y(u,v), z(u,v)), where (u,v) are parameters. The following com-

56 CHAPTER 1. THE COMPUTER

mands plot the circle (sint¢,cost) and the sphere (coswucosv, cosusinw,
sinu):

gnuplot> set parametric
gnuplot> plot sin(t),cos(t)
gnuplot> splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

1.6 Shell Scripting

A typical GNU/Linux environment offers very powerful tools for compli-
cated system administration tasks. They are much more simple to use
than to incorporate them into your program. This way, the programmer
can concentrate on the high performance and scientific computing part
of the project and leave the administration and trivial data analysis tasks
to other, external, programs.

One can avoid repeating the same sequence of commands by coding
them in a file. An example can be found in the file script01.csh:

#!/bin/tcsh —f

g++ area_Ol.cpp —o area
./ area

g++ area_02.cpp —o area
./ area

g++ area_03.cpp —o0 area
./ area

gt++ area_04.cpp —o area
./ area

This is a very simple shell script. The first line instructs the operating
system that the lines that follow are to be interpreted by the program
/bin/tcshf]. This can be any program in the system, which in our case
is the tcsh shell. The following lines are valid commands for the shell,
one in each line. They compile the C++ programs found in the files
that we created in section with g++, and then they run the executable
./area. In order to execute the commands in the file, we have to make

“Use #!/bin/bash if you prefer the bash shell.

1.6. SHELL SCRIPTING 57

sure that the file has the appropriate execute permissions. If not, we have
to give the command:

> chmod u+x scriptO1l.csh

Then we simply type the path to the file script01.csh

> ./scriptOl.csh

and the above commands are run the one after the other. Some of the
versions of the programs that we wrote are asking for input from the
stdin, which, normally, you have to type on the terminal. Instead of
interacting directly with the program, we can write the input data to a
file Input, and run the command

./area < Input

A more convenient solution is to use the, so called, “Here Document”. A
“Here Document” is a section of the script that is treated as if it were a
separate file. As such, it can be used as input to programs by sending its
“contents” to the stdin of the command that runs the programf]. The
“Here Document” does not appear in the filesystem and we don’t need to
administer it as a regular file. An example of using a “Here Document”
can be found in the file script02.csh:

#!/bin/tcsh —f
g++ area_04.cpp —o area
./area <<EOF

eleolololeoloNoNeNe)

“Their great advantage is that we can use variable and command substitution in
them, therefore sending this information to the program that we want to run.

58 CHAPTER 1. THE COMPUTER

10.0
EQF

The stdin of the command ./area is redirected to the contents between
the lines

./area <<EOF

EOF

The string EOF marks the beginning and the end of the “Here Document”,
and can be any string you like. The last EOF has to be placed exactly in
the beginning of the line.

The power of shell scripting lies in its programming capabilities: Vari-
ables, arrays, loops and conditionals can be used in order to create a
complicated program. Shell variables can be used as discussed in section
The value of a variable name is $name and it can be set with the
command set name = value. An array is defined, for example, by the
command

set R = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)

and its data can be accessed using the syntax $R[1] ... $R[10].
Lets take a look at the following script:

#!/bin/tcsh —f

set files (area_01.cpp area_02.cpp area_03.cpp area_04.cpp)
set R = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)

echo "Hello $USER Today is 7 ‘date
foreach file ($files)

echo "# ———— Working on file $file ”
g++ $file —o area

./ area <<EOF

$R[1]

$R[2]

$R[3]

$R[4]

$R[S]

$R[6]

1.6. SHELL SCRIPTING 59

$R[7]
$R[8]
$R[9]
$R[10]
EOF
echo "# ——————————— Done
if (—f AREA.DAT) cat AREA.DAT
end

2

The first two lines of the script define the values of the arrays files (4
values) and R (10 values). The command echo echoes its argument to
the stdin. $USER is the name of the user running the script. “date” is an
example of command substitution: When a command is enclosed between
backquotes and is part of a string, then the command is executed and its
stdout is pasted back to the string. In the example shown above, “date”
is replaced by the current date and time in the format produced by the
date command.
The foreach loop

foreach file ($files)

end

is executed once for each of the 4 values of the array files. Each time the
value of the variable file is set equal to one of the values area_01.cpp,
area_02.cpp, area_03.cpp, area_04.cpp. These values can be used by
the commands in the loop. Therefore, the command g++ $file -o area
compiles a different file each time that it is executed by the loop.

The last line in the loop

if (—f AREA.DAT) cat AREA.DAT

is a conditional. It executes the command cat AREA.DAT if the condition
-f AREA.DAT is true. In this case, -f constructs a logical expression which
is true when the file AREA.DAT exists.

We close this section by presenting a more complicated and advanced
script. It only serves as a demonstration of the shell scripting capabilities.
For more information, the reader is referred to the bibliography [18,119,
20,21,22]. Read carefully the commands, as well as the comments which

60 CHAPTER 1. THE COMPUTER

follow the # mark. Then, write the commands to a file script04. cshﬁ,
make it an executable file with the command chmod u+x scriptO4.csh
and give the command

> ./scriptO4.csh This is my first serious tcsh script

The script will run with the words “This is my first serious tesh script”
as its arguments. Notice how these arguments are manipulated by the
script. Then, the script asks for the values of the radii of ten or more
circles interactively, so that it will compute their perimeter and area. Type
them on the terminal and then observe the script’s output, so that you
understand the function of each command. You will not regret the time
investment!

#!/bin/tcsh —f
Run this script as:
./scriptO4.csh Hello this is a tecsh script

H#
‘command‘ is command substitution: it is replaced by stdout of command
set now = ‘date‘ ; set mypc = ‘uname —a°’

Print information: variables are expanded within double quotes
echo ”I am user $user working on the computer $HOST” #HOST is predefined

echo ”Today the date is : $now” #now is defined above
echo "My home directory is : $home” #home is predefined
echo "My current directory is: $cwd” #cwd changes with cd
echo "My computer runs : $mypc” #mypc is defined above
echo "My process id is : $$ ” #$$ is predefined

Manipulate the command line: ($#argv is number of elements in array argv)
echo ”The command line has $#argv arguments”

echo ”"The name of the command I am running is: $0”

echo ”"Arguments 3rd to last of the command : $argv[3—1” #third to last
echo ”"The last argument is : $argv[S$#argv]” #last element
echo 7All arguments : $argv”

Ask user for input: enter radii of circles

echo —n "Enter radii of circles: ” # variable $< stores one line of input
set Rs = ($<) #Rs is now an array with all words entered by user

if ($#Rs < 10)then #make a test, need at least 10 of them

echo "Need more than 10 radii. Exiting....”

exit (1)

endif

echo ”"You entered $#Rs radii, the first is $Rs[1] and the last $Rs[$#Rs]”
echo ”"Rs= $Rs”

Now, compute the perimeter of each circle:

foreach R ($Rs)

—v rad=$R set the awk variable rad equal to $R. pi:atanZ(O.—1):3.14...
set 1 = ‘awk —v rad=$R 'BEGIN{print 2*atan2(0,—1)*rad}’‘

“You will find it also in the accompanying software

1.6. SHELL SCRIPTING

echo ”Circle with R= $R has perimeter $1”

end

alias defines a command to do what you want: use awk as a calculator
alias acalc ’awk "BEGIN{print \!* }”’ # \!* substitutes args of acalc
echo ”"Using acalc to compute 2+3=" ‘acalc 2+3°

echo "Using acalc to compute cos(2*pi)=" ‘acalc cos(2*atan2(0,—1))°

Now do the same loop over radii as above in a different way

while(expression) is executed as long as “expression” is true
while ($#Rs > 0) #executed as long as $Rs contains radii

set R = $Rs[1] #take first element of $Rs

shift Rs #now $Rs has one less element:old $Rs[1] has vanished
set a = ‘acalc atan2(0,—1)*${R}*${R}‘ # =pi*R*R calculated by acalc
construct a filename to save the result from the value of R:

set file = area${R}.dat

echo ”Circle with R= $R has area $a” > $file #save result in a file
end #end while

Now look for our files: save their names in an array files:

set files = (‘ls —1 area*.dat ‘)
if ($#files == 0) echo ”Sorry, no area files found”
echo 5

echo 7files: $files”

Is —1 $files

echo ™ =
echo ”And the results for the area are:”

foreach f ($files)

echo —m “file ${f}: ”

cat $f

end

now play a little bit with file names:

echo ” i

set £ = $files[1] # test permissions on first file

—f, —r, —w, —x, —d test existence of file ., rwxd permissions
the ! negates the expression (true —> false, false —> true)
echo "testing permissions on files:”

if(—f $f) echo ”$file exists”

if(—r $f) echo ”$file is readable by me”

if(—w $f) echo ”$file is writable by be”

if (! —w /bin/ls) echo ”/bin/ls is NOT writable by me”
if (1 —x $f) echo ”$file is NOT an executable”
if(—x /bin/ls) echo ”/bin/ls is executable by me”
if (1 —d $f) echo ”$file is NOT a directory”

if(—d /bin) echo ”/bin is a directory”

echo ™ o
transform the name of a file

set £ = $cwd/$f # add the full path in $f

set filename = $f:r # removes extension .dat

set extension = $f:e # gets extension .dat

set fdir = $f:h # gets directory of $f

set base = ‘basename $f° # removes directory name
echo “file is: $f”

echo ”filename 1is: $filename”

echo ”extension is: $extension”

echo “directory is: $fdir”

echo “basename is: $base”

now transform the name to one with different extension:
set newfile = ${filename}. jpg

echo ”jpeg name is: $newfile”

61

62 CHAPTER 1. THE COMPUTER

echo "jpeg base is:” ‘basename $newfile*
if ($newfile:e == jpg)echo ‘basename $newfile‘ ~ is a picture”
echo B

Now save all data in a file using a “here document”

A here document starts with <<EOF and ends with a line

starting exactly with EOF (EOF can be any string as below)

In a “here document” we can use variables and command

substitution:

cat <KAREAS >> areas.dat

This file contains the areas of circle of given radii

Computation done by ${user} on ${HOST}. Today is ‘date*

‘cat $files”

AREAS

now see what we got:

if (—f areas.dat) cat areas.dat

You can use a “here document” as standard input to any command:
use gnuplot to save a plot: gnuplot does the job and exits...
gnuplot <KGNU

set terminal jpeg

set output “areas.jpg”

plot “areas.dat” using 4:7 title “areas.dat”,\
pi*x*x title "pi*RA27

set output

GNU

check our results: display the jpeg file using eog
if (—f areas.jpg) eog areas.jpg &

1.6. SHELL SCRIPTING

The ¥ means that the

The %% means that the buffer has been
buffer is in a read-only modified. Changes are Name of the buffer:
mode. No changes are writtten to the file by _ELlnes.f In thl_s case it
allowed. Using Mouse-1 using C-x C-s and the is the same with the
we toggle read-only ** becomel -- connected filel
to normal. \
ﬁ \ EMACE ELNesiE l (1=l

file Edit Options Buffers Tools Fortran Help

DeExEEs b XT

MAXDAT 1000000
STRLEN 200

char prog[STRLENT;

int JACK,maxdat;

vold Jackknife(int,int,double *.E@uble *,double *,doukle’|
void get_the_options(int ,char *%),usage(char *%),1oceXr?)
int main(int arge,char **argy){

int nddat=0;

double O,d0,chi,dehi;

double

stropy(prog, (char *Jhasename(argv[01));
maxdat=-1;JACK=10;
get_the_options(arge,argy);

if(maxdat <= 0) maxdat = MAXDAT;

= (double *) cof TOR((size t)
= Jjack.c &% J17,33)
#1sr /hind/perl

Lse IPC::Open2;

dat,(size_t) sizeo3|

P I'max mumber of charges

N

x0,y0,theta

************ SET CHARGE DISTRIBUTION —-——-

3FL = atan2(0,-1};
$therm = :
foreach $f (@ARGY) L c-mode
print
print ; We are at the 8% of the
Determine header information: i N .
apam(HEAD) ;total size of the buffer The p_omt is at the auto-fill-mode
while(<HEAD> 14]] 16th line and 6th
champ 3 column
0F = split (' ') SHF = S#C; #INF=0, ..., (no. fields - 1)
print join(":",@F)." ——- NF= SNF , $F[0], $F[1], ... , SFISNFIwn";
; {$TIGEN = 3]
- analol.pl ‘@ (10,15) (Perl) \ 4_ I
the'= marks an Mean we are at the top perl-mode Mode lines for each window
unchanged buffer ctghelodten The dark one is the active

Figure 1.5: In this figure, the Emacs window

(Elines.f). Using Drag-Mouse-1
on the mode lines we can
change the size of the windows

has been split in three windows.

63

The

splitting was done horizontally first (C-x 2), and then vertically (C-x 3). By dragging
the mouse (Drag-Mouse-1) on the horizontal mode lines and vertical lines that separate
the windows, we can change window sizes. Notice the useful information diplayed on
the mode lines. Each window has one point and the cursor is on the active window (in
this case the window of the buffer named ELines.f). A buffer with no active changes
in its contents is marked by a --, an edited buffer is marked by ** and a buffer in read
only mode with (%%). With a mouse click on a %%, we can change them to -- (so that we
can edit) and vice versa. With Mouse-3 on the name of a mode we can activate a choice
of minor modes. With Mouse-1 on the name of a mode we ca have access to commands
relevant to the mode. The numbers (17,31), (16,6) and (10,15) on the mode lines show
the (line,column) of the point location on the respective windows.

64 CHAPTER 1. THE COMPUTER
awk search for and process patterns in a file,
cat display, or join, files
cd change working directory
chmod change the access mode of a file
cp copy files
date display current time and date
df display the amount of available disk space
diff display the differences between two files
du display information on disk usage
echo echo a text string to output
find find files
grep search for a pattern in files
gzip compress files in the gzip (.gz) format (gunzip to uncompress)
head display the first few lines of a file
kill send a signal (like KILL) to a process
locate | search for files stored on the system (faster than find)
less display a file one screen at a time
1n create a link to a file
lpr print files
1s list information about files
man search information about command in man pages
mkdir create a directory
mv move and/or rename a file
ps report information on the processes run on the system
pwd print the working directory
rm remove (delete) files
rmdir remove (delete) a directory
sort sort and/or merge files
tail display the last few lines of a file
tar store or retrieve files from an archive file
top dynamic real-time view of processes
we counts lines, words and characters in a file
whatis | list man page entries for a command
where show where a command is located in the path (alternatively: whereis)
which locate an executable program using “’path”
zip create compressed archive in the zip format (.zip)
unzip get/list contents of zip archive

Table 1.1: Basic Unix commands.

1.6. SHELL SCRIPTING

Table 1.2: Basic Emacs commands.

Leaving Emacs

suspend Emacs (or iconify it under X) C-z

exit Emacs permanently C-x C-c

Files

read a file into Emacs C-x C-f
save a file back to disk C-x C-s

save all files C-x s

insert contents of another file into this buffer C-x i
toggle read-only status of buffer C-x C-q

Getting Help

The help system is simple. Type C-h (or F1) and follow the directions. If you
are a first-time user, type C-h t for a tutorial.

remove help window C-x 1

apropos: show commands matching a string C-h a

describe the function a key runs C-h k
describe a function C-h £
get mode-specific information C-h m

Error Recovery

abort partially typed or executing command C-g

recover files lost by a system crash M-x recover-session

undo an unwanted change C-x u, C-_ or C-/
restore a buffer to its original contents M-x revert-buffer
redraw garbaged screen c-1

Incremental Search

search forward C-s
search backward C-r
regular expression search C-M-s
abort current search C-g

Use C-s or C-r again to repeat the search in either direction. If Emacs is still
searching, C-g cancels only the part not matched.

Motion

entity to move over backward forward
character C-b C-f
word M-b M-f

line C-p C-n

Continued...

CHAPTER 1. THE COMPUTER

Table 1.2: Continued...

go to line beginning (or end) C-a C-e
go to buffer beginning (or end) M-< M->
scroll to next screen C-v

scroll to previous screen M-v

scroll left C-x <

scroll right C-x >

scroll current line to center of screen C-u C-1

Killing and Deleting

entity to kill backward forward
character (delete, not kill) DEL c-d
word M-DEL M-d
line (to end of) M-0 C-k C-k
kill region C-w

copy region to kill ring M-w

yank back last thing killed C-y

replace last yank with previous kill M-y

Marking

set mark here C-@ or C-SPC

exchange point and mark C-x C-x

mark paragraph M-h

mark entire buffer C-x h

Query Replace

interactively replace a text string M-% or M-x query-replace
using regular expressions M-x query-replace-regexp
Buffers

select another buffer C-x b

list all buffers C-x C-b

kill a buffer C-x k

Multiple Windows

When two commands are shown, the second is a similar command for a frame
instead of a window.

delete all other windows C-x 1 C-x 51
split window, above and below C-x 2 C-x 5 2
delete this window C-x 0 C-x 50

Continued...

1.6. SHELL SCRIPTING

Table 1.2: Continued...

split window, side by side C-x 3
switch cursor to another window C-x o
grow window taller C-x ~
shrink window narrower C-x {
grow window wider C-x }
Formatting

indent current line (indent code etc) TAB
insert newline after point C-o

fill paragraph M-q
Case Change

uppercase word M-u
lowercase word M-1
capitalize word M-c
uppercase region C-x C-u
lowercase region C-x C-1

The Minibuffer

The following keys are defined in the minibuffer.

complete as much as possible TAB
complete up to one word SPC
complete and execute RET
abort command C-g

Type C-x ESC ESC to edit and repeat the last command that used the minibuffer.
Type F10 to activate menu bar items on text terminals.

Spelling Check

check spelling of current word M-$

check spelling of all words in region M-x ispell-region
check spelling of entire buffer M-x ispell-buffer
On the fly spell checking M-x flyspell-mode
Info — Getting Help Within Emacs

enter the Info documentation reader C-h i

scroll forward SPC

scroll reverse DEL

next node n

Continued...

68

CHAPTER 1.

Table 1.2: Continued...

THE COMPUTER

previous node

move up

select menu item by name
return to last node you saw
return to directory node

go to top node of Info file
go to any node by name

quit Info

Qa += B

o5}

Chapter 2

Kinematics

In this chapter we show how to program simple kinematic equations of
motion of a particle and how to do basic analysis of numerical results.
We use simple methods for plotting and animating trajectories on the
two dimensional plane and three dimensional space. In section we
study numerical errors in the calculation of trajectories of freely moving
particles bouncing off hard walls and obstacles. This will be a prelude to
the study of the integration of the dynamical equations of motion that we
will introduce in the following chapters.

2.1 Motion on the Plane

When a particle moves on the plane, its position can be given in Cartesian
coordinates (z(t), y(t)). These, as a function of time, describe the particle’s
trajectory. The position vector is 7(t) = z(t) + y(y) g, where & and y are
the unit vectors on the = and y axes respectively. The velocity vector is
U(t) = v,(t) & + v, (t) g where

i = T
valt) = d”;(tt) o(t) = dz—i’f), (2.1)

69

70 CHAPTER 2. KINEMATICS

The acceleration d(t) = a,(t) & + a,(t) y is given by
Lo du(t)y dPr(t)
W= = @

_dug(t) dPa(t)

_ dvy(t) . dzy(t) _

a(t) (2.2)

- 1) = —
dt 4t a(t) ==y WE

Figure 2.1: The trajectory of a particle moving in the plane. The figure shows its
position vector 7, velocity ¢ and acceleration @ and their Cartesian components in the
chosen coordinate system at a point of the trajectory.

In this section we study the kinematics of a particle trajectory, there-
fore we assume that the functions (z(¢),y(¢)) are known. By taking
their derivatives, we can compute the velocity and the acceleration of
the particle in motion. We will write simple programs that compute the
values of these functions in a time interval [to,?s], where ¢, is the initial
and t; is the final time. The continuous functions x(t),y(t),v,(t),v,(t)
are approximated by a discrete sequence of their values at the times
to, to + Ot, to + 20t, tg + 36t, ... such that tg + ndit < tf.

We will start the design of our program by forming a generic template
to be used in all of the problems of interest. Then we can study each
problem of particle motion by programming only the equations of mo-
tion without worrying about the less important tasks, like input/output,

2.1. MOTION ON THE PLANE 71

Declare variables

Define fixed parameters (PI....)

¥

User Interface:
Get input from user
x0,y0, t0, tf, d, ...

Print parametersto stdout
i
Initialize variables and other

parameters of the motion
Open datafile

t=t0

Y YES

Calculate
X, Y, VX, vy N

Print resultsin datafile

Y

t=t+dt

Figure 2.2: The flowchart of a typical program computing the trajectory of a particle
from its (kinematic) equations of motion.

user interface etc. Figure shows a flowchart of the basic steps in the
algorithm. The first part of the program declares variables and defines
the values of the fixed parameters (like 7 = 3.1459. .., g = 9.81, etc). The
program starts by interacting with the user (“user interface”) and asks
for the values of the variables x(, vo, to, ty, 0t.... The program prints
these values to the stdout so that the user can check them for correctness
and store them in her data.

The main calculation is performed in a loop executed while t < 4.
The values of the positions and the velocities x(t),y(t), v, (t),v,(t) are
calculated and printed in a file together with the time ¢. At this point we
fix the format of the program output, something that is very important
to do it in a consistent and convenient way for easing data analysis. We
choose to print the values t, x, y, vx, vy in five columns in each line of
the output file.

The specific problem that we are going to solve is the computation of

72 CHAPTER 2. KINEMATICS

the trajectory of the circular motion of a particle on a circle with center
(x0,y0) and radius R with constant angular velocity w. The position on
the circle can be defined by the angle 6, as can be seen in figure 2.3. We
define the initial position of the particle at time ¢, to be 6(¢y) = 0.

y

Figure 2.3: The trajectory of a particle moving on a circle with constant angular
velocity calculated by the program Circle.cpp.

The equations giving the position of the particle at time ¢ are

xz(t) = xo+ Rcos(w(t—to))
y(t) = yo—+ Rsin(w(t —tp)) . (2.3)

Taking the derivative w.r.t. ¢ we obtain the velocity

ve(t) = —wRsin (w(t —to))
vy(t) = wRcos(w(t—ty)), (2.4)
and the acceleration
a,(t) = —w?’Rcos(w(t—ty)) = —w?(x(t) — x0)
a,(t) = —w?Rsin(w(t —to)) = —w?(y(t) — wo) - (2.5)

We note that the above equations imply that R i=0(R=7—7, 7 LR,
7 tangent to the trajectory) and @ = —w?R (R and @ anti-parallel, @ L).

The data structure is quite simple. The constant angular velocity w is
stored in the double variable omega. The center of the circle (z¢, o), the

2.1. MOTION ON THE PLANE 73

radius R of the circle and the angle ¢ are stored in the double variables
x0, yO, R, theta. The times at which we calculate the particle’s position
and velocity are defined by the parameters %, s, 0t and are stored in the
double variables t0, tf, dt. The current position (z(t),y(t)) is calculated
and stored in the double variables x, y and the velocity (v,(t),v,(t)) in
the double variables vx, vy. The declarations of the variables are put in
the beginning of the program:

double x0,y0,R,x,y,vx,vy,t,t0,tf,dt;
double theta,omega;

The user interface of the program is the interaction of the program
with the user and, in our case, it is the part of the program where the
user enters the parameters omega, x0, yO, R, t0O, tf, dt. The program
issues a prompt with the names the variables expected to be read. The
variables are read from the stdin by reading from the stream cin and
the Vlalues entered by the user are printed to the stdout using the stream
cout:

cout < 7# Enter omega:\n”;

cin >> omega; getline(cin,buf);

cout << ”# Enter center of circle (x0,y0) and radius R:\n”;
cin >> x0 >> y0 >> R; getline(cin,buf);

cout << "# Enter tO,tf , dt:\n”;

cin >> t0 >> tf >> dt; getline(cin,buf);

cout <L'# omega= 7 << omega << endl;

cout <’# x0= "~ <L x0 KL 7 y0= " KL yo
K 7R 7 <K<K R < endl;

cout <L’# t0= " <L t0 KL 7 oif= 7 KL tf
KL 7 dt= 7 <L dt << endl;

There are a couple of things to explain. Notice that after reading each
variable from the standard input stream cin, we call the function getline.
By calling getline(cin,buf), a whole line is read from the input stream
cin into the string buff. Then the statement

'This is done so that the used can check for typos and see the actual value read by
the program. By redirecting the stdout of a file on the hard disk, the parameters can
be saved for future reference and used in data analysis.

’In fact it is possible to call getline(cin,buf,char) and read a line until the char-
acter char is encountered.

74 CHAPTER 2. KINEMATICS

cin >> x0 >> yO0 >> R; getline(cin,buf);

has the effect of reading three doubles from the stdin and put the rest of
the line in the string buf. Since we never use buf, this is a mechanism to
discard the rest of the line of input. The reason for doing so will become
clear later.

Objects of type string in C++ store character sequences. In order to
use them you have to include the header

#include <string>

and, e.g., declare them like

string buf ,bufl,buf2;

Then you can store data in the obvious way, like buf="Hello World!",
manipulate string data using operators like buf=bufl (assign bufl to
buf), buf=buf1+buf2 (concatenate bufl and buf2 and store the result in
buf), buf1==buf2 (compare strings) etc.

Finally, endl is used to end all the cout statements. This has the effect
of adding a newline to the output stream and flush the outputf].

Next, the program initializes the state of the computation. This in-
cludes checking the validity of the parameters entered by the user, so
that the computation will be possible. For example, the program com-
putes the expression 2.0%PI/omega, where it is assumed that omega has
a non zero value. We will also demand that R > 0 and w > 0. An
if statement will make those checks and if the parameters have illegal
values, the exit statementf| will stop the program execution and print an

*When buffered output is used, it is not written out immediately but stored in a
temporary memory location (a buffer). When the buffer fills, it is automatically flushed
to the output stream. If we want to force flushing before the buffer is full, then we
have to flush the buffer. There are several methods to flush an output stream os (like
os.flush()).

“The exit(1) statement returns 1 as exit code for the program. This is the int that
main() returns. exit(0) is conventionally used for a normal exit and a non zero value
is used when an error occurs. In order to use exit() you must include the header
cstdlib.

2.1. MOTION ON THE PLANE 75

informative message to the standard error stream cerrfl. The program
opens the file Circle.dat for writing the calculated values of the position
and the velocity of the particle.

if (R <=0.0){cerr <”Illegal value of R \n”;exit(1);}
if (omega<=0.0){cerr <" Illegal value of omega\n”;exit(1);}
cout KL "# T= 7 <K 2.0*PI/omega << endl;
ofstream myfile(”Circle.dat”);

myfile.precision(17);

The line myfile.precision(17) sets the precision of the floating point
numbers (like double) printed to myfile to 17 significant digits accuracy.
The default is 6 which is a pity, because doubles have up to 17 significant
digits accuracy.

If R <0 orw <0 the corresponding exit statements are executed
which end the program execution. The optional error messages are in-
cluded after the stop statements which are printed to the stderr. The
value of the period 7' = 27 /w is also calculated and printed for reference.

The main calculation is performed within the loop

t = t0;
while(t <= tf){

The first statement sets the initial value of the time. The statements
between within the scope of the while(condition) are executed as long as
condition has a true value. The statement t=t+dt increments the time
and this is necessary in order not to enter into an infinite loop. The
statements put in place of the dots calculate the position and
the velocity and print them to the file Circle.dat:

#include <cmath>
theta = omega * (t—t0);
x = x0+R*cos(theta);

*Note that there are more assumptions that need to be checked by the program. We
leave this as an exercise for the reader.

76 CHAPTER 2. KINEMATICS

y = yO+R*sin(theta);
vx = -—omega*R*sin(theta);
vy = omega*R*cos(theta);

myfile << t <K 77
K x K77V gy
KL wvx K7 7KL vy KL endl;

Notice the use of the functions sin and cos that calculate the sine and
cosine of an angle expressed in radians. The header cmath is necessary
to be included.

The program is stored in the file Circle.cpp and can be found in
the accompanied software. The extension .cpp is used to inform the
compiler that the file contains source code written in the C++ language.
Compilation and running can be done using the commands:

> g++ Circle.cpp —o cl
> ./cl

The switch -o c1 forces the compiler g++ to write the binary commands
executed by the program to the filefl c1. The command ./cl loads the
program instructions to the computer memory for execution. When the
programs starts execution, it first asks for the parameter data and then
performs the calculation. A typical session looks like:

g++ Circle.cpp —o cl
./cl

Enter omega:
.0

Enter center of circle (x0,y0) and radius R:
.0 1.0 0.5

Enter tO,tf , dt:
.0 20.0 0.01

omega= 1

x0=1 y0= 1 R= 0.5
t0= 0 tf= 20 dt= 0.01
T= 6.28319

. T VAV,

The lines shown above that start with a # character are printed by the
program and the lines without # are the values of the parameters entered

°If omitted, the executable file has the default name a.out.

2.1. MOTION ON THE PLANE 77

interactively by the user. The user types in the parameters and then
presses the Enter key in order for the program to read them. Here we
have used w = 1.0, 29 = yo = 1.0, R = 0.5, t, = 0.0, t; = 20.0 and 6t = 0.01.

You can execute the above program many times for different values of
the parameters by writing the parameter values in a file using an editor.
For example, in the file Circle.in type the following data:

1.0 omega
1.0 1.0 0.5 (x0, yo) , R
0.0 20.0 0.01 tO0 tf dt

Each line has the parameters that we want to pass to the program with
each call to cout. The rest of the line consists of comments that explain
to the user what each number is there for. We want to discard these
characters during input and this is the reason for using getline to com-
plete reading the rest of the line. The program can read the above values
of the parameters with the command:

> ./cl < Circle.in > Circle.out

The command ./cl runs the commands found in the executable file . /c1.
The < Circle.in redirects the contents of the file Circle.in to the stan-
dard input (stdin) of the command ./cl. This way the program reads
in the values of the parameters from the contents of the file Circle.in.
The > Circle.out redirects the standard output (stdout) of the com-
mand ./cl to the file Circle.out. Its contents can be inspected after the
execution of the program with the command cat:

> cat Circle.out

Enter omega:

Enter center of circle (x0,y0) and radius R:
Enter tO,tf ,h dt:

omega= 1

x0=1 y0=1 R= 0.5

t0= 0 tf= 20 dt= 0.01

T= 6.28319

We list the full program in Circle.cpp below:

78 CHAPTER 2. KINEMATICS

/]
// File Circle .cpp

// Constant angular velocity circular motion

//Set (x0,y0) center of circle, its radius R and omega.
// At t=t0, the particle is at theta=0

/]
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

#define PI 3.1415926535897932

int main() {
//
// Declaration of variables

double x0,y0,R,x,y,vx,vy,t,t0,tf,dt;

double theta,omega;

string buf;

/]
//Ask user for input:

cout <K 7# Enter omega:\n”;

cin >> omega; getline(cin,buf);

cout << "# Enter center of circle (x0,y0) and radius R:\n”;

cin >> x0 >> y0O >> R; getline(cin,buf);

cout < "# Enter tO,tf dt:\n”;

cin >> t0 >> tf >> dt; getline(cin,buf);

cout <L'# omega= 7 << omega << endl;

cout <L’# x0= "7 <L x0 <L 7 y0= 7 KL y0
K7 R= 7 <K<K R << endl;
cout <L’# t0= 7 <L t0 KL 7 otf= 7 KL tf
KL 7 dt= 7 KL dt << endl;
/]

// Initialize
if (R <=0.0){cerr <<”Illegal value of R \n”;exit (1) ;)
if (omega<=0.0){cerr <<"Illegal value of omega\n”;exit(1);}
cout KL # T= 7 <KL 2.0*PI/omega << endl;
ofstream myfile(”Circle.dat”);
// Set precision for numeric output to myfile to 17 digits
myfile.precision(17);

//

// Compute :
t = t0;

2.1. MOTION ON THE PLANE 79

while(t <= tf){
theta = omega * (t—t0);

x = x0+R*cos(theta);
y = yO0+R*sin(theta);
vx = —omega*R*sin(theta);
vy = omega*R*cos(theta);

myfile << t <K 77
K x K77 gy
KLvx K7 7KL vy LKL endl;
t = t + dt;
}
} //main ()

2.1.1 Plotting Data

We use gnuplot for plotting the data produced by our programs. The
file Circle.dat has the time t and the components x, y, vx, vy in five
columns. Therefore we can plot the functions z(¢) and y(¢) by using the
gnuplot commands:

gnuplot> plot 7Circle.dat” using 1:2 with lines title "x(t)”
gnuplot> replot ”Circle.dat” using 1:3 with lines title 7y(t)”

15 T T : T T T T T 4 T T T T T T T T T
X0 theta(t)
/ ¥t pi

\ Vo Vo
06 \ /‘/ \ /’ \ /‘
I N VALV A VAV SN VAV
2 14 1

0 2 4 6 8 10 t 18 20 0 2 4 6 8 10 12 14 16 18 20

Figure 2.4: The plots (z(t),y(t)) (eft) and 6(t) (right) from the data in Circle.dat
for w=1.0, zp =yo = 1.0, R=10.5, t, = 0.0, ty = 20.0 and 4t = 0.01.

The second line puts the second plot together with the first one. The
results can be seen in figure 2.4,

80 CHAPTER 2. KINEMATICS

Let’s see now how we can make the plot of the function 6(¢). We can
do that using the raw data from the file Circle.dat within gnuplot, with-
out having to write a new program. Note that 0(t) = tan™! ((y — vo)/(z — 0)).
The function atan?2 is available in gnuplotﬂ as well as in C++. Use the
online help system in gnuplot in order to see its usage:

gnuplot> help atan2
The ‘atan2(y,x)‘ function returns the arc tangent (inverse
tangent) of the ratio of the real parts of its arguments.
‘atan?2 ° returns its argument in radians or degrees, as
selected by ‘set angles‘, in the correct quadrant.

Therefore, the right way to call the function is atan2(y-y0,x-x0). In
our case x0=y0=1 and x, y are in the 2nd and 3rd columns of the file
Circle.dat. We can construct an expression after the using command as
in page b3, where $2 is the value of the second and $3 the value of the
third column:

gnuplot> x0 =1 ; yo =1
gnuplot> plot "Circle.dat” using 1:(atan2($3—y0,$2—x0)) \
with lines title “theta(t)”,pi,—pi

The second command is broken in two lines by using the character \
so that it fits conveniently in the text. Note how we defined the val-
ues of the variables x0, y0 and how we used them in the expression
atan2($3-x0,$2-y0). We also plot the lines which graph the constant
functions fi(t) = 7= and f»(t) = —7 which mark the limit values of 0(¢).
The gnuplot Variableﬁ pi is predefined and can be used in formed ex-
pressions. The result can be seen in the left plot of figure 2.4.

The velocity components (v,(t),v,(t)) as function of time as well as
the trajectory {(t) can be plotted with the commands:

gnuplot> plot ”Circle.dat” using 1:4 title "v_x(t)” \
with lines
gnuplot> replot ”Circle.dat” using 1:5 title “v_y(t)” \

"The command help functions will show you all the available functions in gnuplot.

*This can be done on the gnuplot command line as well.

*Use the command show variables in order to see the current/default values of
gnuplot variables.

2.1. MOTION ON THE PLANE 81

with lines
gnuplot> plot 7Circle.dat” using 2:3 title 7"x—y”
with lines

t= 20.000000 (x,y)= (1.208431,1.454485)
1.6 T T T T T

14 B

12 | 1

0.8 | 1

0.6 - 1

04 1

Figure 2.5: The particle trajectory plotted by the gnuplot program in the file
animate2D.gnu of the accompanied software. The position vector is shown at a given
time t, which is marked on the title of the plot together with the coordinates (x,y).
The data is produced by the program Circle.cpp described in the text.

We close this section by showing how to do a simple animation of the
particle trajectory using gnuplot. There is a file animate2D.gnu in the
accompanied software which you can copy in the directory where you
have the data file Circle.dat. We are not going to explain how it works{|
but how to use it in order to make your own animations. The final result
is shown in figure 2.5. All that you need to do is to define the data filef],
the initial time t0, the final time tf and the time step dt. These times
can be different from the ones we used to create the data in Circle.dat.
A full animation session can be launched using the commands:

You are most welcome to study the commands in the script and guess how it works
of course!
"It can be any file that has (¢,z,y) in the 1st, 2nd and 3rd columns respectively.

82 CHAPTER 2. KINEMATICS

gnuplot> file = "Circle.dat”
gnuplot> set xrange [0:1.6]; set yrange [0:1.6]
gnuplot> tO = 0; tf = 20 ; dt = 0.1

L1 D)

gnuplot> load “animate2D .gnu’

The first line defines the data file that animate2D.gnu reads data from.
The second line sets the range of the plots and the third line defines
the time parameters used in the animation. The final line launches the
animation. If you want to rerun the animation, you can repeat the last
two commands as many times as you want using the same or different
parameters. E.g. if you wish to run the animation at “half the speed”
you should simply redefine dt=0.05 and set the initial time to t0=0:

gnuplot> tO = 0; dt = 0.05
gnuplot> load “animate2D.gnu”

2.1.2 More Examples

We are now going to apply the steps described in the previous section
to other examples of motion on the plane. The first problem that we are
going to discuss is that of the small oscillations of a simple pendulum.
Figure 2.6 shows the single oscillating degree of freedom 6(t), which
is the small angle that the pendulum forms with the vertical direction.
The motion is periodic with angular frequency w = /g/l and period

Figure 2.6: The simple pendulum whose motion for § < 1 is described by the
program SimplePendulum.cpp.

2.1. MOTION ON THE PLANE 83

T = 27 /w. The angular velocity is computed from 6 = df/dt which gives

0(t) = 6Oycos(w(t—tpy))
0(t) = —whysin (w(t—ty)) (2.6)
We have chosen the initial conditions 6(t,) = 6, and #(t,) = 0. In order to

write the equations of motion in the Cartesian coordinate system shown
in figure we use the relations

x(t) = Isin(0(t))

y(t) = —lcos(6(t))
() = dfl—it):lé(t)cos(e(t))
vy(t) = dil—sjt) = 10(t) sin (6(t)) . (2.7)

These are similar to the equations (2.3) and (R.4) that we used in the case
of the circular motion of the previous section. Therefore the structure of
the program is quite similar. Its final form, which can be found in the
file SimplePendulum. cpp, is:

/]
// File SimplePendulum.cpp

// Set pendulum original position at thetaO
//with no initial speed

//
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

#define PI 3.1415926535897932
#define g 9.81

int main() {
[/
// Declaration of variables
double 1,x,y,vx,vy,t,t0,tf,dt;
double theta,thetal,dtheta_dt,omega;

84 CHAPTER 2. KINEMATICS

string buf;
/]
// Ask user for input:

cout << "# Enter l:\n”;

cin >> 1; getline(cin,buf);
cout <K "# Enter thetaO:\n”;
cin >> thetal; getline(cin,buf);

cout < 7# Enter tO,tf ,dt:\n”;
cin >> t0 >> tf >> dt; getline(cin,buf);
cout <L'# I= " <1 <KL 7 thetaO= 7 < theta0 << endl;
cout <"# t0= " <K t0 KL 7 tf= 7 KL tf
<KL 7 dt= 7 K dt < endl;
/]
// Initialize
omega = sqrt(g/1l);
cout <L 7# omega= 7 << omega
L 7 T= << 2.0*PI/omega << endl;
ofstream myfile(”SimplePendulum.dat”);
myfile.precision(17);

/]
// Compute:
t = t0;
while(t <= tf){
theta = thetal0*cos(omega*(t—t0));
dtheta_dt = —omega*thetaO*sin(omega*(t—t0));
Xx = 1*sin(theta);
y = —l*cos(theta);
VX l*dtheta_dt*cos(theta);
vy l*dtheta_dt*sin(theta);
myfile << t L7
KL x K7TTKLK y T
<L vx K77 KLKvy K77
<< theta << dtheta_dt
< endl;
t = t + dt;
}
} //main ()

We note that the acceleration of gravity g is hard coded in the program
and that the user can only set the length [of the pendulum. The data
file SimplePendulum.dat produced by the program, contains two extra
columns with the current values of A(t) and the angular velocity 6(t).

A simple session for the study of the above problem is shown below{:

“Notice that we replaced the command “using 1:2 with lines title” with “u

2.1. MOTION ON THE PLANE 85

> g++ SimplePendulum.cpp —o sp

> ./sp

Enter 1:

1.0

Enter thetaO:

0.314

Enter tO,tf , dt:

0 20 0.01

1= 1 thetaO= 0.314

t0= 0 tf= 20 dt= 0.01

omega= 3.13209 T= 2.00607

> gnuplot

gnuplot> plot ”SimplePendulum.dat” u 1:2 w 1 t "x(t)”

gnuplot> plot ”SimplePendulum.dat” u 1:3 w 1 t "y(t)”

gnuplot> plot ”SimplePendulum.dat” u 1:4 w 1 t "v_x(t)”

gnuplot> replot ”SimplePendulum.dat” u 1:5 w 1 t "v_y(t)”

gnuplot> plot ”SimplePendulum.dat” u 1:6 w 1 t “theta(t)”

gnuplot> replot ”SimplePendulum.dat” u 1:7 w 1 t “theta (t)”

gnuplot> plot [-0.6:0.6][—1.1:0.1] ”SimplePendulum.dat” \
u 2:3 wlt "x—vy”

gnuplot> file = ”SimplePendulum.dat”

gnuplot> t0=0;t£=20.0;dt=0.1

gnuplot> set xrange [—0.6:0.6];set yrange [—1.1:0.1]
gnuplot> load “animate2D.gnu”

The next example is the study of the trajectory of a particle shot near
the earth’s surfacef] when we consider the effect of air resistance to be
negligible. Then, the equations describing the trajectory of the particle
and its velocity are given by the parametric equations

z(t) = wogt
1
y(t) = wvo,t — §gt2
v(t) = Vg
Uy(t) = oy — gt, (2.8)

where t is the parameter. The initial conditions are z(0) = y(0) = 0,
v5(0) = vg, = vpcosf and v, (0) = vp, = vy sinf, as shown in figure 2.7.

1:2 w lines t”. These abbreviations can be done with every gnuplot command if an
abbreviation uniquely determines a command.
“L.e. g = const. and the Coriolis force can be ignored.

86 CHAPTER 2. KINEMATICS

<l

0 1 1 1 1
2 4 6 8 10

Figure 2.7: The trajectory of a particle moving under the influence of a constant
gravitational field. The initial conditions are set to 2(0) = y(0) = 0, v,,(0) = vg, = vocosd
and v, (0) = v, = vo sin 6.

The structure of the program is similar to the previous ones. The user
enters the magnitude of the particle’s initial velocity and the shooting
angle 0 in degrees. The initial time is taken to be t; = 0. The program
calculates vy, and vy, and prints them to the stdout. The data is written
to the file Projectile.dat. The full program is listed below and it can
be found in the file Projectile.cpp in the accompanied software:

/]
// File Projectile .cpp

//Shooting a progectile near the earth surface.
//No air resistance.

//Starts at (0,0)., set (vO,theta).

//
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

#define PI 3.1415926535897932
#define g 9.81

int main(){
/]

// Declaration of variables

2.1. MOTION ON THE PLANE

double x0,y0,R,x,y,vx,vy,t,tf,dt;
double theta,vOx,v0y,v0;
string buf;

/]
// Ask user for input:
cout << "# Enter vO,theta (in degrees):\n”;

cin >> v0 >> theta; getline(cin,buf);

cout < ’# Enter tf , 6 dt:\n”;

cin >> tf >> dt; getline(cin,buf);

cout <L’# vO0= " <L v0
<L 7 theta= 7<< theta << 7o (degrees)” << endl;

cout <L’# t0= " < 0.0 L7 tf= "7 KL tf
L 7 dt= " <L dt << endl;

//

// Initialize
if(vo <= 0.0)
{cerr <<’ Illegal value of vO <= 0\n”;exit(1);}
if (theta<= 0.0)
{cerr <" Illegal value of theta<= 0\n”;exit(1);}
if (theta>=90.0)
{cerr <<”Illegal value of theta>=90\n";exit(1);}

theta = (PI/180.0)*theta; //convert to radians
vOx = v0*cos(theta);
vOy = vO0*sin(theta);
cout KL # vOx= 7 <K vO0x
L7 ovly= 7 KL v0y << endl;

ofstream myfile(”Projectile.dat”);
myfile.precision(17);
/1

// Compute:
t = 0.0;
while(t <= tf){
x = v0x * t;
y = v0y * t — 0.5*g*t*t;
vx = vOx;
vy = vOy — g*t;
myfile << t <K 77
K x K77 yK7T
K wvx K7 7KL vy KL endl;
t = t + dt;
}
} //main ()

87

A typical session for the study of this problem is shown below:

88 CHAPTER 2. KINEMATICS
> gt++ Projectile.cpp —o0 pj
> ./pJ
Enter vO,theta (in degrees):
10 45
Enter tf . dt:
1.4416 0.001
vO= 10 theta= 450 (degrees)
t0= 0 tf= 1.4416 dt= 0.001
vOx= 7.07107 vOy= 7.07107
> gnuplot
gnuplot> plot ”Projectile .dat” using 1:2 w 1 t "x(t)”
gnuplot> replot "Projectile.dat” using 1:3 w 1 t "y(t)”
gnuplot> plot ”Projectile.dat” using 1:4 w 1 t "v_x(t)”
gnuplot> replot ”"Projectile.dat” using 1:5 w 1 t "v_y(t)”
gnuplot> plot ”Projectile .dat” using 2:3 w 1 t "x—y”
gnuplot> file = ”Projectile.dat”
gnuplot> set xrange [0:10.3];set yrange [0:10.3]
gnuplot> t0=0;tf=1.4416;dt=0.05
gnuplot> load “animate2D.gnu”
Next, we will study the effect of air resistance of the form F' = —mk@.
The solutions to the equations of motion
4 _
%
\
oL -mkyv -
%
mg
0 1 1 1 1
2 4 6 8 10

Figure 2.8: The forces that act on the particle of figure .7 when we assume air

resistance of the form F = —mk#.
dv,,
a, = —
dt
dv
P Yy

Yo dt

= —ku,

= —kv, —g

(2.9)

2.1. MOTION ON THE PLANE

with initial conditions z(0) = y(0) = 0, v,(0) = vy, = vy cosf and v,(0)

Voy = Vo Sin 6 are

ve(t) = wvoe ™
g\ — g
Uy(t) = (on + E) e kt _ E
o(t) = S5 (1-e™)
1 g _ g
y(t) = E <U0y+ E) (1 —e kt) — Et

89

(2.10)

Programming the above equations is as easy as before, the only dif-
ference being that the user needs to provide the value of the constant &.
The full program can be found in the file ProjectileAirResistance.cpp

and it is listed below:

/1

// File ProjectileAirResistance.cpp

// Shooting a progectile near the earth surface.
//No air resistance.

//Starts at (0,0), set k, (vO,theta).

//
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

#define PI 3.1415926535897932
#define g 9.81

int main() {

/1

// Declaration of variables
double x0,y0.R,x,y,vx,vy,t,tf,dt, k;
double theta,vO0x,v0y,v0;
string buf;

//

// Ask user for input:
cout << "# Enter k,v0,theta (in degrees):\n”;

“The proof of equations (2.10) is left as an exercise for the reader.

90 CHAPTER 2. KINEMATICS

cin >> k >> v0 >> theta; getline(cin,buf);
cout < ”’# Enter tf , 6 dt:\n”;

cin >> tf >> dt; getline(cin,buf);
cout <<’# k =7 K< k << endl;
cout <L’# vO= " <L v0
<L 7 theta= 7<< theta << 7o (degrees)” << endl;
cout <’# t0= " < 0.0 KL 77 tf= 7 KL tf
KL 7 dt= 7 <KL dt << endl;

/]
// Initialize
if(vo <= 0.0)
{cerr <" Illegal value of vO <= 0\n”;exit(1);}
if (k <= 0.0)
{cerr <" Illegal value of k <= 0\n”";exit(1);}
if (theta<= 0.0)
{cerr <" Illegal value of theta<= 0\n”;exit(1);}
if (theta>=90.0)
{cerr <<”Illegal value of theta>=90\n”;exit(1);}

theta = (PI/180.0)*theta; //convert to radians
vOx = vO*cos(theta);
vOy = vO0*sin(theta);
cout <KL # vOx= 7 K vO0x
KL 7 vly= 7 KL v0y << endl;

ofstream myfile(”ProjectileAirResistance.dat”);
myfile.precision(17);

/]
// Compute:
t = 0.0;
while(t <= tf)|
x = (vOox/k)*(1.0—exp(—k*t));
y = (1.0/k)*(voy+(g/k))*(1.0 —exp(—k*t))—(g/k)*t;
vx = vOx*exp(—k*t);
vy = (vOoy+(g/k))*exp(—k*t)—(g/k);
myfile << t <K 77
K x K77 yK7T
KLwvx K77 KL vy K endl;
t = t + dt;
}
} //main ()

We also list the commands of a typical session of the study of the
problem:

‘> gt+t+ ProjectileAirResistance.cpp —o pja

2.1. MOTION ON THE PLANE 91

YO
(k) x+ghk2)v0ylk

°
®
o - o - nN w IS @ o ~ ®

0 0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1

Figure 2.9: The plots of z(t).y(t) (eft) and v, (t).v,(t) (right) from the data produced
by the program ProjectileAirResistance.cpp for k = 5.0, vg = 10.0, § = 7 /4, t; =
0.91 and 4t = 0.001. We also plot the asymptotes of these functions as ¢t — co.

Enter k,v0,theta (in degrees):

.0 10.0 45

Enter tf ,dt:

.91 0.001

k =5

vO= 10 theta= 450 (degrees)

t0= 0 tf= 0.91 dt= 0.001

vOx= 7.07107 vOy= 7.07107

gnuplot

gnuplot> vOx = 10*cos(pi/4) ; vOy = 10*sin(pi/4)

gnuplot> g = 9.81 ; k =5

gnuplot> plot [:][:v0x/k+0.1] 7“ProjectileAirResistance.dat” \
using 1:2 with lines title "x(t)”,vOx/k

gnuplot> replot "ProjectileAirResistance .dat” \

using 1:3 with lines title “y(t)”,\

—(g/x)*x+(g/k**2)+v0y/k

Vo HEE O o

gnuplot> plot [:][—g/k—0.6:] ”ProjectileAirResistance.dat” \
using 1:4 with lines title "v_x(t)”,0

gnuplot> replot "ProjectileAirResistance .dat” \
using 1:5 with lines title "v_y(t)”,—g/k

gnuplot> plot "ProjectileAirResistance.dat” \
using 2:3 with lines title ”"With air resistance k=5.0"

gnuplot> replot "Projectile .dat” \
using 2:3 with lines title ”"No air resistance k=0.0”

gnuplot> file = ”ProjectileAirResistance.dat”

gnuplot> set xrange [0:1.4];set yrange [0:1.4]
gnuplot> t0=0;t£=0.91;dt=0.01
gnuplot> load “animate2D .gnu”

92 CHAPTER 2. KINEMATICS

T T
With air resistance k=5.0 ——
No air resistance k=0.0

15 B

05 | 4

0 2 4 6 8 10 12
Figure 2.10: Trajectories of the particles shot with vy = 10.0, # = 7/4 in the absence

of air resistance and when the air resistance is present in the form F' = —mk? with
k=5.0.

L I

Long commands have been continued to the next line as before. We
defined the gnuplot variables v0x, vOy, g and k to have the values that
we used when running the program. We can use them in order to
construct the asymptotes of the plotted functions of time. The results are
shown in figures é and P.10.

The last example of this section will be that of the anisotropic har-
monic oscillator. The force on the particle is

F, = —mwiz F, = —muw3y (2.11)

where the “spring constants” k; = mwi and ks = mw3 are different in the
directions of the axes z and y. The solutions of the dynamical equations
of motion for z(0) = A, y(0) =0, v,(0) = 0 and v, (0) = w, A are

xz(t) = Acos(wit) y(t) = Asin(wst)

ve(t) = —wiAsin(wit) vy (t) = wo A cos(wat) . (2.12)

If the angular frequencies w; and w, satisty certain relations, the trajec-
tories of the particle are closed and self intersect at a given number of

2.1. MOTION ON THE PLANE 93

points. The proof of these relations, as well as their numerical confirma-
tion, is left as an exercise for the reader. The program listed below is in
the file Lissajoux. cpp:

//
// File Lissajous.cpp

// Lissajous curves (special case)
[/x(t)= cos(ol t), y(t)= sin(02 t)
/1l
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

#define PI 3.1415926535897932

int main(){
//
// Declaration of wvariables

double x0,y0,R,x,y,vx,vy,t,t0,tf,dt;

double o01,02,T1,T2;

string buf;

//
//Ask user for input:
cout <K ”# Enter omegal and omega2:\n”;

cin >> ol >> 02;getline(cin,buf);
cout << "# Enter tf dt:\n”;
cin >> tf >> dt;getline(cin,buf);

cout <<'# ol= "7 <K o1 <K 7 02= " KK 02 K endl;
cout <'# t0= " <K 0.0 K 7 tf= 7 KL tf
<KL 7 dt= 7 KL dt <K endl;
//
// Initialize
if (o1 <=0.0){cerr <<”Illegal value of o1\n”;exit(1);}
if (02 <=0.0){cerr <<’Illegal value of 02\n”;exit(1);}
T1 = 2.0*PI/o1;
T2 = 2.0*PI/o02;
cout L 7# Tl= 7 KTl K7 T2= 7" K T2 KL endl;
ofstream myfile(”Lissajous.dat”);
myfile.precision(17);

/1
// Compute:

94 CHAPTER 2. KINEMATICS

t = t0;
while(t <= tf){
x = cos(ol*t);
y = sin(o2*t);
vx = —ol*sin(ol1*t);
vy = o02*cos(02*t);

myfile << t <K 77
K x K77 yK
KL vx K77 <KL vy KL endl;
t = t + dt;
}
} //main ()

We have set A = 1 in the program above. The user must enter the two
angular frequencies w; and w» and the corresponding times. A typical
session for the study of the problem is shown below:

> g++ Lissajous.cpp —o 1sj
> ./1sj

Enter omegal and omega2:
35

Enter tf,h dt:

10.0 0.01

ol= 3 02= 5

t0= 0 tf= 10 dt= 0.01

T1= 2.0944 T2= 1.25664

>gnuplot

gnuplot> plot ”Lissajous.dat” using 1:2 w 1 t "x(t)”
gnuplot> replot “Lissajous.dat” using 1:3 w 1 t "y(t)”
gnuplot> plot ”Lissajous.dat” using 1:4 w 1 t "v_x(t)”
gnuplot> replot ”Lissajous.dat” using 1:5 w 1 t "v_y(t)”
gnuplot> plot ”Lissajous.dat” using 2:3 w 1 t "x—y for 3:5”
gnuplot> file = ”Lissajous.dat”

gnuplot> set xrange [—1.1:1.1];set yrange [—1.1:1.1]
gnuplot> t0=0;t£f=10;dt=0.1
gnuplot> load “animate2D.gnu”

The results for w; = 3 and w, = 5 are shown in figure 2.11.

2.2. MOTION IN SPACE 95

t= 6.400000 (x,y)= (0.949047,0.509265)

Figure 2.11: The trajectory of the anisotropic oscillator with w; = 3 and ws = 5.

2.2 Motion in Space

By slightly generalizing the methods described in the previous section,
we will study the motion of a particle in three dimensional space. All
we have to do is to add an extra equation for the coordinate z(¢) and the
component of the velocity v.(t). The structure of the programs will be
exactly the same as before.

The first example is the conical pendulum, which can be seen in figure
. The particle moves on the xy plane with constant angular velocity
w. The equations of motion are derived from the relations

T.,=Tcos =mg T, =Tsinf =mw?r, (2.13)
where r = [sin . Their solution[] is

x(t) = rcoswt
y(t) = rsinwt
z(t) = —lcosb, (2.14)

®One has to choose appropriate initial conditions. Exercise: find them!

96 CHAPTER 2. KINEMATICS

X
“""m"m:::iﬁef:']’i """
z N\
, CONT
-
t\®
to-
(D | Txy

mg

Figure 2.12: The conical pendulum of the program ConicalPendulum. cpp.

where we have to substitute the values

g
g = —=
cos T
sinff = V1 —cos20
g sinf
= =) 2.1
" w? cos b (2.15)

For the velocity components we obtain

v, = —rwsinwt

vy = Trwcoswt

v, = 0. (2.16)
Therefore we must have

w 2 Wmin = % y (217)

and when w — oo, § — 7/2.

2.2. MOTION IN SPACE 97

In the program that we will write, the user must enter the parameters
[, w, the final time t; and the time step dt. We take ¢y = 0. The convention
that we follow for the output of the results is that they should be written
in a file where the first 7 columns are the values of ¢, z, vy, 2, v,, v, and
v,. The full program is listed below:

//
// File ConicalPendulum.cpp

//Set pendulum angular velocity omega and display motion in 3D
/]
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

#define PI 3.1415926535897932
#define g 9.81

int main(){
//
// Declaration of variables
double 1,r,x,y,z,vx,vy,vz,t,tf,dt;
double theta,cos_theta,sin_theta,omega;
string buf;

/]
// Ask user for input:
cout << 7# Enter 1,omega:\n”;

cin >> 1 >> omega; getline(cin,buf);
cout < ’# Enter tf , dt:\n”;
cin >> tf >> dt; getline(cin,buf);
cout <K 7# I="7" K1 < 7 omega= 7 <L omega << endl;
cout < 7# T= 7 < 2.0*PI/omega
<< 7 omega min= " << sqrt(g/l) << emndl;
cout <L'# t0=" <K 0.0 K 7 tf=" KL tf

KL 7 dt= 7 K dt << endl;

//
// Initialize
cos_theta = g/(omega*omega*1);
if (cos_theta >= 1.0){
cerr << “cos(theta)>= 1\n”;
exit (1)

98 CHAPTER 2. KINEMATICS

}

sin_theta = sqrt(1.0 —cos_theta*cos_theta);

z = —g/(omega*omega); //they remain constant throught;
vz= 0.0; //the motion
r = g/(omega*omega)*sin_theta/cos_theta;

ofstream myfile(”ConicalPendulum .dat”);
myfile.precision(17);

/]
// Compute :
t = 0.0;
while(t <= tf){
x = r*cos(omega*t);
y = r*sin(omega*t);
vx = —r*sin(omega*t)*omega;
vy = r*cos(omega*t)*omega;
myfile << t <
KL x KL7T7TK yK7T 7KKz
<< wvx K7 T Ky KT T KLKvz KT
<< endl;
t = t + dt;
}
} //main ()

In order to compile and run the program we can use the commands
shown below:

> g++ ConicalPendulum.cpp —o cpd

> ./cpd

Enter 1,omega:
1.0 6.28

Enter tf , dt:
10.0 0.01

1= 1 omega= 6.28
T= 1.00051 omega min= 3.13209
t0= 0 tf= 10 dt= 0.01

The results are recorded in the file ConicalPendulum.dat. In order to
plot the functions x(t), y(t), 2(t), v.(t), vy(t), v.(t) we give the following
gnuplot commands:

> gnuplot
gnuplot> plot ”ConicalPendulum.dat” u 1:2 w 1 t "x(t)”
gnuplot> replot “ConicalPendulum.dat” u 1:3 w 1 t "y(t)”

2.2. MOTION IN SPACE 99

gnuplot> replot ”ConicalPendulum.dat” u 1:4 w 1 t "z(t)”

gnuplot> plot ”ConicalPendulum.dat” u 1:5 w 1 t "v_x(t)”
gnuplot> replot ”ConicalPendulum.dat” u 1:6 w 1 t "v_y(t)”
gnuplot> replot ”ConicalPendulum.dat” u 1:7 w 1 t "v_z(t)”

The results are shown in figure . In order to make a three dimen-

‘ I T ;) T o= 8) ——
T I O A
R A Y L Y VA A L O AMopL
06’\“”“ “\ i \“ i i (/\; ‘/\u I
i P | 1 S
“w_J‘\:H;(;\w‘g:‘w‘w B i N AT LR AR A R
NI \““‘L (O] [R R R R \“\ HEREEEE
SRR R TR e T R O I T I R A A AR A A
! | | | . i i i i
S R A A R S R RS H R R
i : A | | | . o I 1: ‘ I |
ot L L L R
/AR N ER R R e R ER R R E
AR I R FRN TR AR R R Y VL Y
EERE IR Tl I TR IR TR IR O PRI T T P L ER VAR T
| il il i | | I |
U W
08| | i | VR T \f
Vo vV Y
10 1 2 3 4 ‘5 6 7 8 9 10 VSD 1 2 3 4 5 6 7 8 9 10

Figure 2.13: The plots of the functions z(t), y(t), 2(t), v4(t), vy (t), v:(t) of the program
ConicalPendulum. cpp for w =6.28, [= 1.0.

sional plot of the trajectory, we should use the gnuplot command splot:

gnuplot> splot ”ConicalPendulum.dat” u 2:3:4 w 1 t “r(t)”

The result is shown in figure . We can click on the trajectory and
rotate it and view it from a different angle. We can change the plot limits
with the command:

gnuplot> splot [—1.1:1.1][—-1.1:1.1][-0.3:0.0] \
”ConicalPendulum .dat” using 2:3:4 w 1 t "r(t)”

We can animate the trajectory of the particle by using the file animate3D.gnu

from the accompanying software. The commands are similar to the ones
we had to give in the two dimensional case for the planar trajectories
when we used the file animate2D. gnu:

gnuplot> file = ”ConicalPendulum.dat”
gnuplot> set xrange [—1.1:1.1];set yrange [—1.1:1.1]
gnuplot> set zrange [—0.3:0]

100 CHAPTER 2. KINEMATICS

=] Snuplut ==
Eles#@@aa 3 ?

‘vwsw: 55.0000, 62.0000 scale: 1.00000, 1.00000

Figure 2.14: The plot of the particle trajectory 7(¢t) of the program
ConicalPendulum.cpp for w = 6.28, [= 1.0. We can click and drag with the mouse on
the window and rotate the curve and see it from a different angle. At the bottom left of
the window, we see the viewing direction, given by the angles § = 55.0 degrees (angle
with the z axis) and ¢ = 62 degrees (angle with the z axis).

gnuplot> t0=0;t£f=10;dt=0.1
gnuplot> load “animate3D.gnu”

The result can be seen in figure . The program animate3D.gnu can
be used on the data file of any program that prints t x y z as the first
words on each of its lines. All we have to do is to change the value of
the file variable in gnuplot.

Next, we will study the trajectory of a charged particle in a homoge-
neous magnetic field B = B3. At time ty, the particle is at 7 = o2 and
its velocity is 7y = v,y + vo.2, see figure . The magnetic force on the
particle is F = q(v x 5) = ¢qBv,@ — ¢Bv,y and the equations of motion
are

du,, _qB
a, = E:wvy w:z
dv,
a, = E:—wvx
a, = 0. (2.18)

By integrating the above equations with the given initial conditions we

2.2. MOTION IN SPACE 101

t= 10.100000 (x,y,z)= (0.964311,-0.090732,-0.248742)

0.05
0.1 F
2015
0.2 F
025 |
03

Figure 2.15: The particle trajectory () computed by the program
ConicalPendulum.cpp for w = 6.28, | = 1.0 and plotted by the gnuplot script
animate3D.gnu. The title of the plot shows the current time and the particles coor-
dinates.

obtain
v, (t) = wp,sinwt
vy(t) = wp,coswt
v,(t) = .. (2.19)

Integrating once more, we obtain the position of the particle as a function
of time

v v
x(t) = (mo + &) — Y coswt =z cos wt
w w
v v
y(t) = Esinwt = —zosinwt pe zp = ——2
w w
2(t) = wost, (2.20)
where we have chosen zy = —up,/w. This choice places the center of the

circle, which is the projection of the trajectory on the xy plane, to be at

102 CHAPTER 2. KINEMATICS

A
4
B
VOZ VO
X % v
/ y

X

Figure 2.16: A particle at time ¢, = 0 is at the position 7y = xoZ with velocity
To = Voy¥ + V0.2 in a homogeneous magnetic field 5 = B2.

the origin of the coordinate system. The trajectory is a helix with radius
R = —x and pitch vp,T = 2710, /w.

We are now ready to write a program that calculates the trajectory
given b (). The user enters the parameters v, and 6, shown in
figure @, as well as the angular frequency w (Larmor frequency). The
components of the initial velocity are vy, = vpcost and vy, = vosind.
The initial position is calculated from the equation zy = —wvy,/w. The
program can be found in the file ChargeInB. cpp:

/1
// File ChargelnB.cpp

//A charged particle of mass m and charge q enters a magnetic
// field B in +z direction. It enters with velocity
//v0x=0,v0y=v0 cos(theta),v0z=v0 sin(theta), 0<=theta<pi/2
// at the position x0=—v0Oy/omega, omega=q B/m

/1

// Enter vO and theta and see trajectory from

//t0=0 to tf at step dt

/1
#include <iostream >
#include <fstream>
#include <cstdlib >
#include <string>
#include <cmath>

2.2. MOTION IN SPACE

using namespace std;
#define PI 3.1415926535897932

int main(){

/1

103

// Declaration of variables
double x,y,z,vx,vy,vz,t,tf,dt;
double x0,y0,z0,v0x,v0y,v0z,vO0;
double theta,omega;
string buf;

/]
// Ask user for input:
cout <K 7# Enter omega:\n”;

cin >> omega; getline(cin,buf);
cout << ”# Enter vO, theta (degrees):\n”;
cin >> v0 >> theta; getline(cin,buf);
cout < ’# Enter tf , 6 dt:\n”;
cin >> tf >> dt; getline(cin,buf);
cout < "# omega= 7 << omega
L7 T= <L 2.0*PI/omega << endl;
cout < 7# v0= 7KL w0
< 7 theta= 7 << theta
<L 7o(degrees)”<< endl;
cout <L'# tO0= 7 K 0.0 7 tf= 7 KL tf
KL 7 dt= "7 < dt <K endl;
//

// Initialize
if (theta<0.0 |l theta>=90.0) exit(1);
theta = (PI/180.0)*theta; //convert to radians
vOy = vO*cos(theta);
v0z = vO*sin(theta);
cout < 7# vOx= " < 0.0
L7 vly= 7 KL voy
<KL 7 vl0z= 7 KL v0z <K endl;
x0 = — vO0y/omega;
cout < 7# x0= " < x0
L7 y0=7 KL yo
L 7 z0= 7 KL =20 << endl;
cout < "# xy plane: Circle with center (0,0) and R= "
<< abs(x0) << endl;
cout < "# step of helix: s=v0z*T=
< v0z*2.0*PI/omega << endl;
ofstream myfile(”ChargelnB.dat”);
myfile.precision(17);

t1)

104 CHAPTER 2. KINEMATICS

/]
// Compute :
t = 0.0;
vz = v0z;
while(t <= tf){
x = x0*cos(omega*t);
y = —x0*sin(omega*t);
z v0z*t;
vx = vOy*sin(omega*t);
vy = vOy*cos(omega*t);
myfile << t L 7
K x K77 KK KTV zKK 7T
<L vx KT 7T Ky K7 T KLvz LT
<< endl;
t = t + dt;
}
} //main ()

A typical session in which we calculate the trajectories shown in figures
2.17 and 2.1§ is shown below:

35 T T T T T T T L— 1 T T T T T j—
3 " S/ T T O 2
[{1 | | [1 I | | 1
AR RN
& AR R
R A e R AR AR AR
2 SinARAH NI I
| | | | |
| | [
z HIHRERERINRIRERT
|
02 ““ ‘\‘ “‘ ““ i ““ ‘\‘ | ““‘\
* | | ‘\\ H \\‘ H [
sl T
05 1 I \\‘ I “\ \\‘ [‘M \“ \\
: st V]
| I | N
L7 SN TN N\ | i | | | | L | [| {
oE7 N\ N N N N NN N NN ssb WU W Y \H‘
A A I A
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Figure 2.17: The plots of the x(t), y(t), 2(t), vz (t), vy (t), v2(t) functions calculated by
the program in ChargeInB.cpp for w = 6.28, g = 1.0, § = 20 degrees.

> g++ ChargelInB.cpp —o chg
> ./chg

Enter omega:

6.28

Enter v0O, theta (degrees):
1.0 20

2.3. TRAPPED IN A BOX 105

Enter tf ,dt:

10 0.01

omega= 6.28 T= 1.00051

v0= 1 theta= 20o(degrees)

t0= 0 tf= 10 dt= 0.01

vOx= 0 vOy= 0.939693 vO0z= 0.34202

x0= —0.149633 y0= 0 z0= 3.11248e—-317

xy plane: Circle with center (0,0) and R= 0.149633
step of helix: s=v0z*T= 0.342194

> gnuplot

gnuplot> plot ”ChargelnB.dat” u 1:2 w 1 title ”x(t)”
gnuplot> replot ”ChargelnB.dat” u 1:3 w 1 title 7y(t)”
gnuplot> replot "ChargelnB.dat” u 1:4 w1l title 7z(t)”
gnuplot> plot ”ChargeInB.dat” u 1:5 w 1l title v x(t)”
gnuplot> replot ”ChargelnB.dat” u 1:6 w 1 title "v_y(t)”
gnuplot> replot ”ChargelnB.dat” u 1:7 w 1 title "v_z(t)”
gnuplot> splot ”ChargelnB.dat” u 2:3:4 w 1 title "r(t)”

gnuplot> file = ”ChargelnB.dat”

gnuplot> set xrange [—0.65:0.65];set yrange [—0.65:0.65]
gnuplot> set zrange [0:1.3]

gnuplot> t0=0;tf=3.5;dt=0.1

gnuplot> load “animate3D .gnu”

2.3 Trapped in a Box

In this section we will study the motion of a particle that is free, except
when bouncing elastically on a wall or on certain obstacles. This motion
is calculated by approximate algorithms that introduce systematic errors.
These types of errorsﬁ are also encountered in the study of more compli-
cated dynamics, but the simplicity of the problem will allow us to control
them in a systematic and easy to understand way.

2.3.1 The One Dimensional Box

The simplest example of such a motion is that of a particle in a “one
dimensional box”. The particle moves freely on the z axis for 0 <z < L,

In the previous sections, our calculations had a small systematic error due to the
approximate nature of numerical floating point operations which approximate exact real
number calculations. But the algorithms used were not introducing systematic errors
like in the cases discussed in this section.

106 CHAPTER 2. KINEMATICS

t= 3.500000 (x,y,z)= (0.149623,0.001671,1.197069)

Figure 2.18: The trajectory #(t) calculated by the program in ChargeInB.cpp for
w = 6.28, vyg = 1.0, # = 20 degrees as shown by the program animate3D.gnu. The
current time and the coordinates of the particle are printed on the title of the plot.

as can be seen in figure 2.19. When it reaches the boundaries 2 = 0 and
x = L it bounces and its velocity instantly reversed. Its potential energy

1S
0 0O<zx<L
Vi) = { +o0o elsewhere (2.21)

which has the shape of an infinitely deep well. The force F' = —dV (z)/dx =
0 within the box and F' = £o0 at the position of the walls.

Initially we have to know the position of the particle x, as well as
its velocity vy (the sign of vy depends on the direction of the particle’s
motion) at time ¢,. As long as the particle moves within the box, its
motion is free and

x(t) = $0+U0(t—t0)
v(t) = . (2.22)

For a small enough change in time ¢¢, so that there is no bouncing on

2.3. TRAPPED IN A BOX 107

Figure 2.19: A particle in a one dimensional box with its walls located at z = 0 and
x = L.

the wall in the time interval (¢,¢ + 0t), we have that

x(t+dt) = x(t) +v(t)dt
v(t+dt) = wv(t). (2.23)

Therefore we could use the above relations in our program and when
the particle bounces off a wall we could simple reverse its velocity v(t) —
—v(t). The devil is hiding in the word “when”. Since the time interval
0t is finite in our program, there is no way to know the instant of the
collision with accuracy better than ~ 4t. However, our algorithm will
change the direction of the velocity at time ¢ + 0¢, when the particle will
have already crossed the wall. This will introduce a systematic error,
which is expected to decrease with decreasing J¢. One way to implement
the above idea is by constructing the loop

while(t <= tf){

x += v*dt;

t += dt;

if(x < 0.0 Il x >L) v =—v;
}

where the last line gives the testing condition for the wall collision and
the subsequent change of the velocity.

The full program that realizes the proposed algorithm is listed below
and can be found in the file box1D_1.cpp. The user can set the size of
the box L, the initial conditions x0 and v0 at time tO, the final time tf
and the time step dt:

108 CHAPTER 2. KINEMATICS

//
// File box1D_1.cpp

// Motion of a free particle in a box 0<x<L

//Use integration with time step dt: x = x + v*dt
//
#include <iostream >
#include <iomanip>
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main() {

/]

// Declaration of variables
float L,x0,v0,t0,tf,dt,t,x,v;
string buf;

//
// Ask user for input:

cout <K "# Enter L:\n”;

cin >> L; getline(cin,buf);

cout < "# L = 7 <KL < endl;

cout << "# Enter x0,v0:\n”;

cin >> x0 >> v0; getline(cin,buf);

cout < "# x0= 7 <K x0 <K 7 v0= " <K v0 < endl;

cout < "# Enter tO,tf dt:\n”;

cin >> t0 >> tf >> dt; getline(cin,buf);

cout < 7# t0= "7 <K t0 K 7 tf= 7 KL tf

KL 7 dt= " <K dt < endl;

if(L <= 0.0f){cerr << "L <=0\n"; exit(1);}

if (x0< 0.0f){cerr << 7"x0<=0\n"; exit(1);}

if(x0> L){cerr << 7x0> L\n”; exit(1);}

if (vo== 0.0f){cerr << 7"v0 =0\n"; exit(1);}

//

// Initialize
t = t0;
x = x0;
v = vO0;

ofstream myfile(’box1D_1.dat”);
myfile.precision(9); // float precision (and a bit more...)

/]
// Compute :
while(t <= tf){
myfile << setw(17) <K t < 7 7 /] set width of field

2.3. TRAPPED IN A BOX 109

K setw(17) <K x K77 // to 17 characters
K setw(17) << v << '\n’; // using setw (17)
x += v*dt;
t += dt;

if(x < 0.0f Il x >L) v =—v;

}
myfile.close();

} //main ()

In this section we will study the effects of roundoff errors in numeri-
cal computations. Computers store numbers in memory, which is finite.
Therefore, real numbers are represented in some approximation that de-
pends on the amount of memory that is used for their storage. This
approximation corresponds to what is termed as floating point numbers.
C++ is supposed to provide at least three basic types of floating point
numbers, float, double and long double. In most implementationsﬂ,
float uses 4 bytes of memory and double 8. In this case, float has
an accuracy to, approximately, 7 significant digits and double 17. See
Chapter 1 of [8] and [14] for details. Moreover, float represent num-
bers with magnitude in the, approximate, range (107%%,10%) while double
in (1073% 10%%). Note that variables of the integer type (int, long, ...)
are exact representations of integers, whereas floating point numbers are
approximations to reals.

In the program shown above, we used numbers of the float type
instead of double in order to exaggerate roundoff errors. This way we
can study the dependence of this type of errors on the accuracy of the
floating point numbers used in a programf]. In order to do that, we
declared the floating point variables as float:

"Notice that the C++ standard states that the value representation of floating-point
types is implementation-defined. The C standard requires that the type double provides
at least as much precision as float, and the type long double provides at least as much
precision as double. The gcc 5.4 version that we are using in this book represents
float using 4 bytes and double with 8, but you should check whether this is true with
the compiler that you are using.

"®The use of float can be the preferred choice of a programmer for some applications.
First, in order to save memory, because float occupies half the memory of a double.
Second, it is not always true that increasing the accuracy of floating point numbers
will increase the accuracy of a computation, although in most of the cases it will. The
wisdom of the field is to always to use as much accuracy as you need and no more!

110 CHAPTER 2. KINEMATICS

‘ float L,x0,v0,t0,tf,dt,t,x,v; ‘

We also used numerical constants of type float. This is indicated by the
letter £ at the end of their names: 2.0 is a constant of type double (the
C++ default), whereas 2.0f is a constant of type float. Determining the
accuracy of floating point constants is a thorny issue that can be the cause
on introducing subtle bugs in a program and the programmer should be
very careful about doing it carefully.

Finally we changed the form of the output. Since a float represents a
real number with at most 7 significant digits, there is no point of printing
more. That is why we used the statements

myfile.precision(9);
myfile.setw(17);

For purposes of studying the numerical accuracy of our results, we used
9 digits of output, which is, of course, slightly redundant. setw(17)
prints the numbers of the next output of the stream myfile using at
least 17 character spaces. This improves the legibility of the results when
inspecting the output files. The use of setw requires the header iomanip.
The computed data is recorded in the file box1D_1.dat in three columns.
Compiling, running and plotting the trajectory using gnuplot can be done
as follows:

> g++ boxlD_1.cpp —o boxl
> ./box1
Enter L:
10
L = 10
Enter x0,v0:
0 1.0
x0= 0 vO= 1
Enter t0,tf , dt:
0 100 0.01
t0= 0 tf= 100 dt= 0.01
> gnuplot
gnuplot> plot “box1D_1.dat” using 1:2 w 1 title »x(t)7,\
0 notitle,10 notitle
gnuplot> plot [:][—-1.2:1.2] "box1D_1.dat” \
using 1:3 w 1 title "v(t)”

2.3. TRAPPED IN A BOX 11

10,0002
10,0001
10,0001 I\
© / \

2F 4 10

9.99995

9.99985

-2

. / \
0 10 20 30 40 50 60 70 80 90 100 % 200005 2000 00035

Figure 2.20: The trajectory z(t) of a particle in a box with L = 10, zy = 0.0, vy = 1.0,
to = 0, 6t = 0.01. The plot to the right magnifies a detail when ¢t ~ 90 which exposes
the systematic errors in determining the exact moment of the collision of the particle
with the wall at ¢, = 90 and the corresponding maximum value of z(¢), z,, = L = 10.0.

The trajectory x(t) is shown in figure 2.20. The effects of the system-
atic errors can be easily seen by noting that the expected collisions occur
every 17'/2 = L/v = 10 units of time. Therefore, on the plot to the right
of figure 2.20] the reversal of the particle’s motion should have occurred
att =90, x = L = 10.

The reader should have already realized that the above mentioned
error can be made to vanish by taking arbitrarily small 6t. Therefore,
we naively expect that as long as we have the necessary computer power
to take 0t as small as possible and the corresponding time intervals as
many as possible, we can achieve any precision that we want. Well,
that is true only up to a point. The problem is that the next position is
determined by the addition operation x+vkdt and the next moment in
time by t+dt. Floating point numbers of the float type have a maximum
accuracy of approximately 7 significant decimal digits. Therefore, if the
operands x and v*dt are real numbers differing by more than 7 orders
of magnitude (vxdt< 1077 x), the effect of the addition x+v*dt=x, which
is null! The reason is that the floating point unit of the processor has
to convert both numbers x and v*dt into a representation having the
same exponent and in doing so, the corresponding significant digits of
the smaller number vdt are lost. The result is less catastrophic when
vkdtS 107 x with 0 < @ < 7, but some degree of accuracy is also lost at

112 CHAPTER 2. KINEMATICS

each addition operation. And since we have accumulation of such errors
over many intervals t—t+dt, the error can become significant and destroy
our calculation for large enough times. A similar error accumulates in
the determination of the next instant of time t+dt, but we will discuss
below how to make this contribution to the total error negligible. The
above mentioned errors can become less detrimental by using floating
point numbers of greater accuracy than the float type. For example
double numbers have approximately 17 significant decimal digits. But
again, the precision is finite and the same type of errors are there only
to be revealed by a more demanding and complicated calculation.

The remedy to such a problem can only be a change in the algorithm.
This is not always possible, but in the case at hand this is easy to do.
For example, consider the equation that gives the position of a particle
in free motion

Let’s use the above relation for the parts of the motion between two
collisions. Then, all we have to do is to reverse the direction of the
motion and reset the initial position and time to be the position and time
of the collision. This can be done by using the loop:

while(t <= tf){
x = x0 + vO*(t—t0);
if(x < 0.0f Il x> L) |

x0= x;
t0= t;
vO0= —vO0;
}
t += dt;

In the above algorithm, the error in the time of the collision is not
vanishing but we don’t have the “instability” problem of the dt— 0 limit[.
Therefore we can isolate and study the effect of each type of error. The
full program that implements the above algorithm is given below and
can be found in the file box1D_2.cpp:

1

“We still have this problem in the t=t+dt operation. See discussion in the next
section.

2.3. TRAPPED IN A BOX

/1
// File box1D_2.cpp

// Motion of a free particle in a box 0<x<L

//Use constant velocity equation: x = x0 + vO*(t—t0)
// Reverse velocity and redefine x0,t0 on boundaries

/1

#include <iostream >
#include <iomanip>
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main() {

/1

// Declaration of variables
float L,x0,v0,t0,tf,dt,t,x,v;
string buf;

/1

// Ask user for input:

cout << "# Enter L:\n”;
cin >> L; getline(cin,buf);
cout < "# L = 7 <KL < endl;
cout << "# Enter x0,v0:\n”;
cin >> x0 >> v0; getline(cin,buf);
cout < "# x0= 7 <K x0 << 7 v0= " <K v0 < endl;
cout << "# Enter tO,tf dt:\n”;
cin >> t0 >> tf >> dt; getline(cin,buf);
cout << 7# t0= 7" << t0 KL 7 tf= 7 KL tf

KL 7 dt= 7 KK dt << endl;
if(L <= 0.0f){cerr << "L <=0\n""; exit(1);}
if (x0< 0.0f){cerr << 7x0<=0\n"; exit(1);}
if(x0> L){cerr << 7x0> L\n”; exit(1);}
if (vo== 0.0f){cerr << 7v0 =0\n"; exit(1);}

/]
// Initialize

t = t0;

ofstream myfile(’box1D_2.dat”);

myfile.precision(9); // float precision (and a bit more...

/1

// Compute:
while(t <= tf){
x = x0 + vO*(t—t0);
myfile << setw(17) << t < 7 7

113

114 CHAPTER 2. KINEMATICS

K setw(17) <K x K77
<K setw(17) <L v0 < "\n’;
if(x < 0.0f Il x> L) |

x0= x;
t0= t;
vO0= —vO0;
}
t 4= dt;

}
myfile.close();

} //main ()

Compiling and running the above program is done as before and the
results are stored in the file box1D 2.dat.

2.3.2 Errors

In this section we will study the effect of the systematic errors that we
encountered in the previous section in more detail. We considered two
types of errors: First, the systematic error of determining the instant
of the collision of the particle with the wall. This error is reduced by
taking a smaller time step 6¢. Then, the systematic error that accumulates
with each addition of two numbers with increasing difference in their
orders of magnitude. This error is increased with decreasing ¢t. The
competition of the two effects makes the optimal choice of §¢ the result of
a careful analysis. Such a situation is found in many interesting problems,
therefore it is quite instructive to study it in more detail.

When the exact solution of the problem is not known, the systematic
errors are controlled by studying the behavior of the solution as a function
of 4t. If the solutions are converging in a region of values of ¢t, one gains
confidence that the true solution has been determined up to the accuracy
of the convergence.

In the previous sections, we studied two different algorithms, pro-
grammed in the files box1D_1.cpp and box1D_2.cpp. We will refer to
them as “method 1” and “method 2” respectively. We will study the
convergence of the results as t — 0 by fixing all the parameters except 6t
and then study the dependence of the results on §t. We will take L = 10,
vo = 1.0, gy = 0.0, tp = 0.0, t; = 95.0, so that the particle will collide
with the wall every 10 units of time. We will measure the position of

2.3. TRAPPED IN A BOX 115

the particle z(t ~ 95)f] as a function of 6t and study its convergence to a
limitf] as 6t — 0.

The analysis requires a lot of repetitive work: Compiling, setting the
parameter values, running the program and calculating the value of z(t ~
95) for many values of §¢. We write the values of the parameters read by
the program in a file box1D_anal.in:

10 L
0 1.0 x0 vO
0 95 0.0 tO0 tf dt

Then we compile the program

> g++ boxlD_1.cpp —o box

and run it with the command:

> cat box1D_anal.in | ./box

By using the pipe |, we send the contents of box1D_anal.in to the stdin
of the command ./box by using the command cat. The result z(t ~ 95)
can be found in the last line of the file box1D_1.dat:

> tail —m 1 box1D_1.dat
94.9511948 5.45000267 —1.

The third number in the above line is the value of the velocity. In a
file box1D_anal.dat we write ¢ and the first two numbers coming out
from the command tail. Then we decrease the value 6t — 4t/2 in
the file box1D_anal.in and run again. We repeat for 12 more times
until 0t reaches the valuef] 0.000012. We do the samef} using method 2
and we place the results for z(¢ ~ 95) in two new columns in the file
box1D_anal.dat. The result is

*Note the =!

*0f course we know the answer: z(95) = 5.

“Try the command sed 's/0.05/0.025/' box1D_anal.in | ./box by changing
0.025 with the desired value of dt.

*See the shell script box1D_anal.csh as a suggestion on how to automate this boring
process.

116 CHAPTER 2. KINEMATICS

#
dt t1_95 x1(95) x2(95)
#
0.050000 94.95119 5.450003 5.550126
0.025000 94.97849 5.275011 5.174837
0.012500 94.99519 5.124993 5.099736
0.006250 94.99850 4.987460 5.063134
0.003125 94.99734 5.021894 5.035365
0.001563 94.99923 5.034538 5.017764
0.000781 94.99939 4.919035 5.011735
0.000391 94.99979 4.695203 5.005493
0.000195 95.00000 5.434725 5.001935
0.000098 94.99991 5.528124 5.000745
0.000049 94.99998 3.358000 5.000330
0.000024 94.99998 2.724212 5.000232
0.000012 94.99999 9.240705 5.000158

Convergence is studied in figure 2.21. The 1st method maximizes its
accuracy for 0t ~ 0.01, whereas for d¢ < 0.0001 the error becomes > 10%
and the method becomes useless. The 2nd method has much better
behavior that the 1st one.

We observe that as dt decreases, the final value of ¢t approaches the
expected t; = 95. Why don’t we obtain ¢t = 95, especially when /6t is an
integer? How many steps does it really take to reach ¢t ~ 95, when the
expected number of those is ~ 95/6t? Each time you take a measurement,
issue the command

> wc —1 box1D_1.dat

which measures the number of lines in the file box1D_1.dat and compare
this number with the expected one. The result is interesting:

dt N NO

H H FHF

0.050000 1900 1900
0.025000 3800 3800
0.012500 7601 7600
0.006250 15203 15200
0.003125 30394 30400
0.001563 60760 60780

2.3. TRAPPED IN A BOX 117

0.000781 121751 121638
0.000391 243753 242966
0.000195 485144 487179
0.000098 962662 969387
0.000049 1972589 1938775
0.000024 4067548 3958333
0.000012 7540956 7916666

where the second column has the number of steps computed by the
program and the third one has the expected number of steps. We
observe that the accuracy decreases with decreasing ¢t and in the end
the difference is about 5%! Notice that the last line should have given
ty = 0.000012 x 7540956 ~ 90.5, an error comparable to the period of the
particle’s motion.

We conclude that one important source of accumulation of system-
atic errors is the calculation of time. This type of errors become more
significant with decreasing 6t. We can improve the accuracy of the calcu-
lation significantly if we use the multiplication t=t0+i*dt instead of the
addition t=t+dt, where i is a step counter:

//t =t + dt; // Not accurate , avoid
t = t0 + i*dt; // Better accuracy, prefer

The main loop in the program box1D_1.cpp becomes:

t = t0;

x = x0;

v = vO;

i= 0

while(t <= (tf+1.0e—5f)) {
i += 1;
x += v*dt;
t = t0 + i*dt;

if(x < 0.0f Il x > L) v =—v;
}

The full program can be found in the file box1D_4.cpp of the accom-
panying software. We call this “method 3”. We perform the same change
in the file box1D_2.cpp, which we store in the file box1D_5.cpp. We call
this “method 4”. We repeat the same analysis using methods 3 and 4
and we find that the problem of calculating time accurately practically

118 CHAPTER 2. KINEMATICS

vanishes. The result of the analysis can be found on the right plot of fig-
ure 2.21. Methods 2 and 4 have no significant difference in their results,
whereas methods 1 and 3 do have a dramatic difference, with method 3
decreasing the error more than tenfold. The problem of the increase of
systematic errors with decreasing 6t does not vanish completely due to
the operation x=x+v+*dt. This type of error is harder to deal with and one
has to invent more elaborate algorithms in order to reduce it significantly.
This will be discussed further in chapter J4.

100 n T T T 100
o4
10 b o, L ¥ 00 o
+ b3 + +
1t N E 1t n
— + 4 —_ +
X S
< 0.1} < 0.1 N
s 35 +
+
0.01 + 1 0.01 |
0.001 1 0.001 | +
method 1+ method 3+ +
method 2 method 4
0.0001 - : - 0.0001 - : -
le-05 0.0001 0.001 0.01 0.1 le-05 0.0001 0.001 0.01 0.1
St ot

Figure 2.21: The error 6z = 2|z;(95) — x(95)|/|z;(95) + 2(95)| x 100 where z;(95) is
the value calculated by method i = 1,2,3,4 and z(95) the exact value according to the
text.

2.3.3 The Two Dimensional Box

A particle is confined to move on the plane in the area 0 < z < L, and
0 <y < L,. When it reaches the boundaries of this two dimensional
box, it bounces elastically off its walls. The particle is found in an infinite
depth orthogonal potential well. The particle starts moving at time ¢,
from (z¢,yo) and our program will calculate its trajectory until time ¢,
with time step d¢. Such a trajectory can be seen in figure 2.23.

If the particle’s position and velocity are known at time ¢, then at time

2.3. TRAPPED IN A BOX 119

t + 0t they will be given by the relations

x(t+dt) = x(t) + v, (t)dt
y(t+0t) = y(t) +v,(t)dt
v (t+0t) = v,(t)
vy(t+0t) = v,(t). (2.25)

The collision of the particle off the walls is modeled by reflection of the
normal component of the velocity when the respective coordinate of the
particle crosses the wall. This is a source of the systematic errors that we
discussed in the previous section. The central loop of the program is:

++;
= t0 + i*dt;

+= vx*dt;

+= vy*dt;

f(x < 0.0 Il x> Lx){
VX = —VX;

nx++;

S A

}

if(y < 0.0 Il y > Ly){
vy = —vy;
ny++;

}

The full program can be found in the file box2D_1.cpp. Notice that
we introduced two counters nx and ny of the particle’s collisions with the
walls:

//
// File box2D_1.cpp

//Motion of a free particle in a box 0<x<Lx 0<y<Ly

//Use integration with time step dt: x = x + vx*dt y=y+vy*dt
//
#include <iostream >
#include <iomanip>
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

120

int main() {

/1

CHAPTER 2. KINEMATICS

// Declaration of variables

double Lx,Ly,x0,y0,v0x,v0y,t0,tf,dt,t,x,y,vx,Vvy;

int i,nx,ny;
string buf;
/]
// Ask user for input:
cout << 7# Enter Lx,Ly:\n”;
cin >> Lx >> Ly; getline(cin,buf);
cout < 7# Lx = << Lx <K 7 Ly= 7 <K Ly << endl;
cout < 7’# Enter x0,y0,v0x,vOy:\n”;
cin >> x0 >> y0 >> v0x >> vOy; getline(cin,buf);
cout < 7# x0= " <KL x0 K 7 y0=" <KL yo
<KL 7 vlx= 7 KL v0x KL 7 vly= 7 KL v0y <L endl;
cout < "# Enter tO,tf dt:\n”;
cin >> t0 >> tf >> dt; getline(cin,buf);
cout < 7# t0= " <K t0 KL 7 tf="7 KL tf
KL 7 dt= "7 K dt <K endl;
if (Lx<= 0.0){cerr << "Lx<=0 \n”; exit(1);}
if (Ly<= 0.0){cerr << "Ly<=0 \n”; exit(1);}
if (x0< 0.0){cerr << 7x0<=0 \n”; exit(1);}
if (x0> Lx){cerr << 7x0> Lx\n”; exit(1);}
if (yo< 0.0){cerr << 7"x0<=0 \n”; exit(1);}
if (yo> Ly){cerr << 7y0> Ly\n”; exit(1);}
if (vOx*v0x+v0y*vO0y == 0.0){cerr << “v0 =0\n"; exit(1);}
/]
// Initialize
i = 0 ;
nx = 0 ; ny =0 ;
t = t0 ;
x =x0 ; y =y0 ;
vx = vOx; vy = vOy;
ofstream myfile(’box2D_1.dat”);
myfile.precision(17);
/]
// Compute:
while(t <= tf){

myfile << setw(28) <K t <K 7
<K setw(28) <K x K77
<K setw(28) Ky K77
<KL setw(28) < vx <K 77
< setw(28) << vy <K "\n’;

i += 1;

2.3. TRAPPED IN A BOX 121

t = t0 + i*dt;
x += vx*dt;
y += vy*dt;
if(x < 0.0 Il x> Lx){
VX = —VX;
nx+-+;
}
if(y < 0.0 Il y > Ly){
vy = —Vy;
ny++;
}
}
myfile.close();
cout < ”# Number of collisions:\n”;
cout < "# nx= 7 < nx < 7 ny= " < ny << endl;
//main ()

A typical session for the study of a particle’s trajectory could be:

> g++ box2D_1.cpp —o box

> ./box

Enter Lx,Ly:

10.0 5.0

Lx = 10 Ly= 5

Enter x0,y0,v0x,vOy:

5.0 0.0 1.27 1.33

x0= 5 y0= 0 vOx= 1.27 vOy= 1.33

Enter tO,tf ,dt:

0 50 0.01

t0= 0 tf= 50 dt= 0.01

Number of collisions:

nx= 6 ny= 13

> gnuplot

gnuplot> plot “box2D_1.dat” using 1:2 w 1 title ”x (t)”
gnuplot> replot ”box2D_1.dat” using 1:3 w 1 title 7y (t)”
gnuplot> plot “box2D_1.dat” using 1:4 w 1 title "vx(t)”
gnuplot> replot “box2D 1.dat” using 1:5 w 1 title “vy(t)”
gnuplot> plot "box2D_1.dat” using 2:3 w 1 title "x—y”

Notice the last line of output from the program: The particle bounces off
the vertical walls 6 times (nx=6) and from the horizontal ones 13 (ny=13).
The gnuplot commands construct the diagrams displayed in figures

and 2.23.

In order to animate the particle’s trajectory, we can copy the file

122 CHAPTER 2. KINEMATICS

12

15

‘ v ——

Xty —— Vo

y(t)
10 1 '
8,
05
6, 4
ol
4,
-0.5
SRIAY, V \

Figure 2.22: The results for the trajectory of a particle in a two dimensional box
g) Yy p

given by the program box2D_1.cpp. The parameters are L, = 10, L, = 5, 9 = 5,
Yo =0, voz = 1.27, voy = 1.33, tg = 0, ty = 50, 6t = 0.01.

box2D_animate.gnu of the accompanying software to the current direc-
tory and give the gnuplot commands:

gnuplot> file = “box2D_1.dat”

gnuplot> Lx = 10 ; Ly = 5

gnuplot> t0 = 0 ; tf = 50; dt = 1

gnuplot> load “box2D_animate.gnu”

gnuplot> t0 = 0 ; dt = 0.5; load “box2D_animate.gnu”

The last line repeats the same animation at half speed. You can also
use the file animate2D.gnu discussed in section @ We add new com-
mands in the file box2D_animate.gnu so that the plot limits are calculated
automatically and the box is drawn on the plot. The arrow drawn is not
the position vector with respect to the origin of the coordinate axes, but
the one connecting the initial with the current position of the particle.

The next step should be to test the accuracy of your results. This can
be done by generalizing the discussion of the previous section and it is
left as an exercise for the reader.

2.4 Applications

In this section we will study simple examples of motion in a box with
different types of obstacles. We will start with a game of ... mini golf.

2.4. APPLICATIONS 123

t= 48.000000 (x,y)= (5.901700,3.817100)

=
T

Figure 2.23: The trajectory of the particle of figure until ¢ = 48. The origin of
the arrow is at the initial position of the particle and its end is at its current position.
The bold lines mark the boundaries of the box.

The player shoots a (point) “ball” which moves in an orthogonal box of
linear dimensions L, and L, and which is open on the z = 0 side. In
the box there is a circular “hole” with center at (z.,y.) and radius R. If
the “ball” falls in the “hole”, the player wins. If the ball leaves out of the
box through its open side, the player loses. In order to check if the ball
is in the hole when it is at position (z,y), all we have to do is to check
whether (z —z.)* + (y — y.)* < R?.

Initially we place the ball at the position (0, L, /2) at time t, = 0. The
player hits the ball which leaves with initial velocity of magnitude v, at
an angle 0 degrees with the z axis. The program is found in the file
MiniGolf.cpp and is listed below:

[/
// File MiniGolf.cpp

//Motion of a free particle in a box 0<x<Lx 0<y<Ly

//The box is open at x=0 and has a hole at (xc,yc) of radius R

124 CHAPTER 2. KINEMATICS

t= 45.300000 (X,y)= (7.854117,2.982556)

o = N w ESN 6]
T

0 2 4 6 8 10

Figure 2.24: The trajectory of the particle calculated by the program MiniGolf.cpp
using the parameters chosen in the text. The moment of ... success is shown. At time
t = 45.3 the particle enters the hole’s region which has its center at (8,2.5) and its
radius is 0.5.

// Ball is shot at (0,Ly/2) with speed vO, angle theta (degrees)
//Use integration with time step dt: x = x + vx*dt y=y+vy*dt

// Ball stops in hole (success) or at x=0 (failure)

/]
#include <iostream >
#include <iomanip>
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

#define PI 3.14159265358979324

int main() {
/]
// Declaration of variables

double Lx,Ly,x0,y0,v0x,v0y,t0,tf,dt,t,x,y,vx,vy;

2.4. APPLICATIONS

double
int

string
string

/1

v0,theta,xc,yc,R,R2;
i,nx,ny,;

result;

buf ;

125

//Ask user for input:

}
}
}
}

cout <K ’# Enter Lx,Ly:\n”;
cin >> Lx >> Ly; getline(cin,buf);
cout < "# Lx = 7 < Lx <K 7 Ly="7"7 <K Ly << endl;
cout << ”# Enter hole position and radius: (xc,yc), R:\n”;
cin >> xc >> yc >> R; getline(cin,buf);
cout <K "# (xc,yc)= ("KLK xe K" 7 Ky
K7 R=7 <K R < endl;
cout << "# Enter vO, theta(degrees):\n”;
cin >> v0 >> theta; getline(cin,buf);
cout < 7# v0= " <L v0 <K 7 theta= "7 << theta
< 7 degrees ” << endl;
cout < ’# Enter dt:\n”;
cin >> dt; getline(cin,buf);
if (Lx<= 0.0){cerr << 7"Lx<=0 \n”; exit(1);
if (Ly<= 0.0){cerr << ”Ly<=0 \n”; exit(1);
if (vo<= 0.0) {cerr < 7v0<=0 \n”; exit(1);
if (abs(theta) > 90.0){cerr << “theta > 90\n”; exit(1);
//
// Initialize
t0 = 0.0;
x0 = 0.00001; // small but non—zero
y0 = Ly/2.0;
R2 = R*R;
theta = (PI/180.0)*theta;
vOx = vO*cos(theta);
vOy = vO*sin(theta);
cout < 7# x0= 7 <L x0 K7 y0= "7 KL yo
<KL 7 vlx= 7 KL vox <L 7 vly= 7 K v0y <L endl;
i = 0 ;
nx = 0 ; ny =0 ;
t = t0 ;
x =x0; y =y0 ;
vx = vOx; vy = vOy;

ofstream myfile(”MiniGolf.dat”);
myfile.precision(17);

/1

// Compute:

while (true) {
myfile << setw(28) <K t <K 7 7

126 CHAPTER 2. KINEMATICS

<K setw(28) KK x K77
K setw(28) Ky K77
<K setw(28) <K vx <K 77
<< setw(28) << vy < ’\n’;

i ++;

t = t0 + i*dt;
x += vx*dt;

y += vy*dt;

if(x > Lx){vx —VX; nx++;}
if(y < 0.0){vy = —vy; ny++;}
if(y > Ly){vy = —vy; ny++;}
if (x <=0.0)
{result="Failure”;break;} // exit loop
if (((x—xc)*(x—xc)+(y—yc)*(y—yc)) <= R2)
{result="Success”;break;} // exit loop

}
myfile.close();
cout < ”# Number of collisions:\n”;

cout < "# Result= 7 < result
< 7 nx= "7 K nx <K 7 ny= 7 < ny <L endl;
} //main ()

In order to run it, we can use the commands:

> g++ MiniGolf.cpp —o mg

> ./mg

Enter Lx,Ly:

10 5

Lx = 10 Ly= 5

Enter hole position and radius: (xc,yc), R:
2.5 0.5

(xc,yc)= (8 , 2.5) R= 0.5

Enter vO, theta(degrees):

80

vO= 1 theta= 80 degrees

Enter dt:

.01

x0= 1e—05 y0= 2.5 vOx= 0.173648 vOy= 0.984808
Number of collisions:

Result= Success nx= 0 ny= 9

oA I oo F F o~ F 00 FH F

You should construct the plots of the position and the velocity of the
particle. You can also use the animation program found in the file
MiniGolf_animate.gnu for fun. Copy it from the accompanying software

2.4. APPLICATIONS 127

to the current directory and give the gnuplot commands:

gnuplot> file = "MiniGolf.dat”
gnuplot> Lx = 10;Ly = 5

gnuplot> xc = 8; yc = 2.5 ; R = 0.5
gnuplot> t0 = 0; dt = 0.1

gnuplot> load ”MiniGolf_animate.gnu”

The results are shown in figure .

The next example with be three dimensional. We will study the mo-
tion of a particle confined within a cylinder of radius R and height L.
The collisions of the particle with the cylinder are elastic. We take the
axis of the cylinder to be the 2z axis and the two bases of the cylinder to
be located at z = 0 and z = L. This is shown in figure [2.26.

The collisions of the particle with the bases of the cylinder are easy to
program: we follow the same steps as in the case of the simple box. For
the collision with the cylinder’s side, we consider the projection of the
motion on the x — y plane. The projection of the particle moves within
a circle of radius R and center at the intersection of the z axis with the
plane. This is shown in figure 2.25. At the collision, the component
of the velocity is reflected v, — —v,, whereas vy remains the same. The
velocity of the particle before the collision is

T = 0,7 +v,9
= 0, F 4+ vgf) (2.26)
and after the collision is
U= vl g
= —u, P+ vgh (2.27)

From the relations

cos 0z + sin 0y
—sin 6z + cos 0y, (2.28)

>
|

>
I

~

and v, =vU -7, vy = U - 0, we have that

v, = vycosf 4 v,sind
vg = —v,sinf+ v, cosb. (2.29)

128 CHAPTER 2. KINEMATICS

The inverse relations are

vy, = U,c086 —vgsind
v, = u,sinf+vgcosh. (2.30)

With the transformation v, — —v,, the new velocity in Cartesian coordi-
nates will be

= —u,cos0 —vysinf
= —u,sinf + vycosb. (2.31)

v

(%

< -8 >

The transformation v, — v}, v, — v, will be performed in the function

x°

Figure 2.25: The elastic collision of the particle moving within the circle of radius
R = |}_?:| and center 7, = z.2 + Y.y at the point ¥ = z& + yy. We have that R =
(x —)& + (y — ye)). The initial velocity is & = v, + vg0 where # = R/R. After
reflecting v,, — —v,. the new velocity of the particle is ¥ = —v,# + vgé.

reflectVonCircle(vx,vy,x,y,xc,yc,R). Upon entry to the function, we
provide the initial velocity (vx,vy), the collision point (x,y), the center
of the circle (xc,yc) and the radius of the CircleﬁpR. Upon exit from the

*Of course one expects R? = (z — z.)? + (y — y.)?, but because of systematic errors,
we require R to be given.

2.4. APPLICATIONS 129

function, (vx,vy) have been replaced with the new valuesfj (v, vy)-
The program can be found in the file Cylinder3D.cpp and is listed
below:

/]
// File Cylinder3D.cpp
// Motion of a free particle in a cylinder with axis the z—axis,
//radius R and 0<z<L

//Use integration with time step dt: x = x + vx*dt
// y =y + vy*dt
// z = z + vz*dt

//Use function reflectVonCircle for colisions at r=R
//
#include <iostream >
#include <iomanip>
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

void reflectVonCircle(double& vx,double& vy,
double& x ,double& y ,

const double& xc,
const double& yc,
const double& R);

int main() |
//
// Declaration of variables

double x0,y0,z0,v0x,v0y,v0z,t0,tf,dt,t,x,y,z,vx,vy,vz;

double L,R,R2,vxy,rxy,r2xy,xc,ycC;

int i,nr,nz;

string buf;

//
//Ask user for input:
cout << "# Enter R,L:\n”;
cin >> R >> L; getline(cin, buf);
cout < "# R= 7" <K R K7 L="7 KL < endl;
cout < 7# Enter x0,y0,z0,v0x,v0y,v0z:\n”;
cin >> x0>>y0>>z0>>v0x>>v0y>>v0z; getline(cin,buf);
rxy = sqrt(x0*x0+y0*y0);

®Notice that upon exit, the particle is also placed exactly on the circle.

130

cout

cout

cout
cin
cout

if (R
if (L
if (z
if(z

<
<<
<L
<<
<<
<

<L
>>
<<
<

0
0

CHAPTER 2. KINEMATICS

“# x0 = 7 K x0
” yO — » << yo
7 z0 = 7 KL z0

7 rxy= 7 < rxy << endl;
7# vOx= 7 < vO0x

vOy= 7 < vO0y

7 v0z= 7 K v0z <K endl;

”# Enter tO,tf ,dt:\n”;

t0 >> tf >> dt; getline(cin,buf);
“# t0= 7 KL t0 KL 7 tf= 7 KL tf

7 dt= 7 <K dt <K endl;

<= 0.0){cerr < "R<=0 \n”; exit(1);}
<= 0.0){cerr < 7L<=0 \n”; exit(1);}
< 0.0){cerr <L 7z0<0 \n”; exit(1);}
> L){cerr << 7z0>L \n”; exit(1);}

if(rxy > R){cerr < "rxy>R \n”; exit(1);}
if (vOx*v0x+vOy*vOy+v0z*v0z == 0.0)

/1

{cerr <L 7v0=0 \n”; exit(1);}

// Initialize

i
nr
t
X

VX
R2
xC

yc

0

0
t0
x0
vO
R*
0.
0.

; nz =0
;00 y =y0 ;5 z = z0 ;
x;, vy = vO0y; vz = v0z;
R;
0; //center of circle which is the projection

0; //of the cylinder on the xy plane

ofstream myfile(”Cylinder3D.dat”);
myfile.precision(17);

/1

// Compute :
while (t <= tf){
myfile << setw(28) << t < 77

N < W c

<L
<<
<<
<
<
<L

setw(28) <K x K7 ”
setw(28) <Ky K77
setw(28) <K z K 7”7
setw(28) << vx <K 77
setw(28) < vy <K 7 7
setw(28) << vz <K "\n’;

t0 + i*dt;
vx*dt;
vy*dt;
vz*dt;

2.4. APPLICATIONS 131

if(z<= 0.0 Il z > L){vz = —vz; nz++;}

r2xy = x*x+y*y;

if (r2xy > R2){
reflectVonCircle(vx,vy,x,y,xc,yc,R);
nr++;

}

}
myfile.close();

cout < ”# Number of collisions:\n”;

cout << "# nr= 7 <K nr < 7 nz= " < nz < endl;
} //main ()
//
/]
[/
void reflectVonCircle(double& vx,double& vy,

double& x ,double& y

const double& xc,
const double& yc,
const double& R) {

double theta,cth,sth,vr,vth;

theta = atan2(y—yc,x—xc);

cth = cos(theta);

sth = sin(theta);

vr = vx*cth + vy *sth;

vth = —vx*sth + vy *cth;

VX = —vr*cth — vth*sth; //reflect vr —> —vr

vy = —vr*sth + vth*cth;

X = %E + R*cth; //put x,y on the circle

y = yc + R*sth;
} //reflectVonCircle ()

Note that the function atan2 is used for computing the angle theta.
This function, when called with two arguments atan2(y,x), returns the
angle = tan~!(y/x) in radians. The correct quadrant of the circle where
(xz,y) lies is chosen. The angle that we want to compute is given by
atan2(y-yc,x-xc). Then we apply equations (2.29) and (2.31) and in
the last two lines we enforce the particle to be at the point (z.+ R cos 0, y.+
Rsin 6), exactly on the circle.

A typical session is shown below:

132 CHAPTER 2. KINEMATICS

t= 500.000000 (x,y,z)= (2.227212,0.469828,7.088600)

s
$7
N,

% \,.49%""‘,‘0'4’ v’
g v

10

o N A~ O

Figure 2.26: The trajectory of a particle moving inside a cylinder with R = 10, L = 10,
computed by the program Cylinder3D.cpp. We have chosen 7y = 1.0 + 2.2g + 3.12,
To = 0.932 — 0.899 + 0.742, to = 0, t; = 500.0, 6¢ = 0.01.

> gt++ Cylinder3D.cpp —o cl

> ./cl

Enter R,L:

10.0 10.0

R= 10 L= 10

Enter x0,y0,z0,v0x,v0y,v0z:

1.0 2.2 3.1 0.93 —-0.89 0.74
#x0 =1 y0O=2.2 z0 = 3.1 rxy= 2.41661
vOx= 0.93 vOy= —-0.89 v0z= 0.74
Enter tO,tf ,dt:

0.0 500.0 0.01

t0= 0 tf= 500 dt= 0.01

Number of collisions:

nr= 33 nz= 37

In order to plot the position and the velocity as a function of time, we
use the following gnuplot commands:

2.4. APPLICATIONS 133

gnuplot> file="Cylinder3D .dat”

gnuplot> plot file using 1:2 with lines title 7 x(t)”,\
file using 1:3 with lines title 7 y(t)”,\
file using 1:4 with lines title 7 z(t)”

gnuplot> plot file using 1:5 with lines title "v_x(t)”,\
file using 1:6 with lines title “v_y(t)”,\
file using 1:7 with lines title "v_z(t)”

_— s S S S

We can also compute the distance of the particle from the cylinder’s axis
r(t) = \/z(t)?> + y(t)? as a function of time using the command:

gnuplot> plot file using 1:(sqrt($2**2+$3**2)) w 1 t "r(t)”

In order to plot the trajectory, together with the cylinder, we give the
commands:

gnuplot> file="Cylinder3D .dat”

gnuplot> L = 10 ; R = 10

gnuplot> set urange [0:2.0%pi]

gnuplot> set vrange [0:L]

gnuplot> set parametric

gnuplot> splot file using 2:3:4 with lines notitle,\
R*cos(u) ,R*sin(u) ,v notitle

The command set parametric is necessary if one wants to make a para-
metric plot of a surface 7(u,v) = z(u,v) Z +y(u,v) y+ z(u,v) 2. The cylin-
der (without the bases) is given by the parametric equations 7(u,v) =
Rcosui® + Rsinuy + vz with u € [0,27), v € [0, L].

We can also animate the trajectory with the help of the gnuplot script
file Cylinder3D_animate.gnu. Copy the file from the accompanying soft-
ware to the current directory and give the gnuplot commands:

gnuplot> file="Cylinder3D .dat”
gnuplot> R=10;L=10;t0=0;t£=500;dt=10
gnuplot> load ”Cylinder3D_animate.gnu”

The result is shown in figure 2.26.

The last example will be that of a simple model of a spacetime worm-
hole. This is a simple spacetime geometry which, in the framework of
the theory of general relativity, describes the connection of two distant

134 CHAPTER 2. KINEMATICS

-10

Figure 2.27: A typical geometry of space near a wormhole. Two asymptotically
flat regions of space are connected through a “neck” which can be arranged to be of
small length compared to the distance of the wormhole mouths when traveled from the
outside space.

areas in space which are asymptotically flat. This means, that far enough
from the wormhole’s mouths, space is almost flat - free of gravity. Such
a geometry is depicted in figure 2.27. The distance traveled by someone
through the mouths could be much smaller than the distance traveled
outside the wormhole and, at least theoretically, traversable wormholes
could be used for interstellar/intergalactic traveling and/or communica-
tions between otherwise distant areas in the universe. Of course we
should note that such macroscopic and stable wormholes are not known
to be possible to exist in the framework of general relativity. One needs
an exotic type of matter with negative energy density which has never
been observed. Such exotic geometries may realize microscopically as
quantum fluctuations of spacetime and make the small scale structure of
the geometryf| a “spacetime foam”.

We will study a very simple model of the above geometry on the plane

*See K.S. Thorne “Black Holes and Time Wraps: Einstein’s Outrageous Legacy”,
W.W. Norton, New York for a popular review of these concepts.

2.4. APPLICATIONS 135

Figure 2.28: A simple model of the spacetime geometry of figure 2.27. The particle
moves on the whole plane except withing the two disks that have been removed. The
neck of the wormhole is modeled by the two circles (6) = £d/2+Rcos#, y(§) = Rsin6,
—7m < 6 < 7 and has zero length since their points have been identified. There is a
given direction in this identification, so that points with the same 6 are the same (you
can imagine how this happens by folding the plane across the y axis and then glue the
two circles together). The entrance of the particle through one mouth and exit through
the other is done as shown for the velocity vector ¢ — ¥'.

with a particle moving freely in itf]. We take the two dimensional plane
and cut two equal disks of radius R with centers at distance d like in
figure 2.28. We identify the points on the two circles such that the point
1 of the left circle is the same as the point 1 on the right circle, the point 2
on the left with the point 2 on the right etc. The two circles are given by
the parametric equations z(0) = d/2 + Rcos#f, y(#) = Rsinf, -7 <0 <=
for the right circle and z(0) = —d/2 — Rcos#, y(#) = Rsinf, -1 <0 <7
for the left. Points on the two circles with the same ¢ are identified.
A particle entering the wormhole from the left circle with velocity v is
immediately exiting from the right with velocity v" as shown in figure

"This idea can be found as an exercise in the excellent introductory general relativ-
ity textbook J. B. Hartle, “Gravity: An Introduction to Einstein’s General Relativity”,
Addison Wesley 2003, Ch. 7, Ex. 25.

136 CHAPTER 2. KINEMATICS

2.28.
Then we will do the following;:

1. Write a program that computes the trajectory of a particle moving
in the geometry of figure 2.28. We set the limits of motion to be
—L/2 < x < L/2 and —L/2 < y < L/2. We will use periodic
boundary conditions in order to define what happens when the
particle attempts to move outside these limits. This means that
we identify the + = —L/2 line with the + = +L/2 line as well
as the y = —L/2 line with the y = +L/2 line. The user enters the
parameters R, d and L as well as the initial conditions (z¢, ¥o), (vo, ¢)
where @iy = vg(cos ¢ + sin ¢y). The user will also provide the time
parameters ¢; and dt for motion in the time interval t € [t) = 0, t/]
with step dt.

2. Plot the particle’s trajectory with (x¢,yo) = (0, —1), (vo, ¢) = (1,10°)
ue ty = 40, dt = 0.05 in the geometry with L =20,d =5, R = 1.

3. Find a closed trajectory which does not cross the boundaries |z| =
L/2, ly| = L/2 and determine whether it is stable under small per-
turbations of the initial conditions.

4. Find other closed trajectories that go through the mouths of the
wormhole and study their stability under small perturbations of
the initial conditions.

5. Add to the program the option to calculate the distance traveled by
the particle. If the particle starts from (—zy,0) and moves in the +z
direction to the (z,0), o > R + d/2 position, draw the trajectory
and calculate the distance traveled on paper. Then confirm your
calculation from the numerical result coming from your program.

6. Change the boundary conditions, so that the particle bounces off
elastically at |x| = L/2, |y] = L/2 and replot all the trajectories
mentioned above.

Define the right circle c; by the parametric equations

x(é’):g+Rcos¢9, y(0) = Rsinf , —r<0<m, (2.32)

2.4. APPLICATIONS 137

Figure 2.29: The particle crossing the wormhole through the right circle ¢; with
velocity ¢. It emerges from c; with velocity ¢'. The unit vectors (é,,ég), (é.,¢é,) are
computed from the parametric equations of the two circles ¢; and cs.

and the left circle c; by the parametric equations

d
x(@):—i—Rcose, y(0) = Rsinf, —rt<O<m. (2.33)
The particle’s position changes at time dt by
t, = dt
T, = Ti_q1 + vpdt

Yy = yi—1+vydt
(2.34)

for i = 1,2,... for given (z9,40), to = 0 and as long as ¢; < t;. If the
point (z;,y;) is outside the boundaries |z| = L/2, |y| = L/2, we redefine
x; - x; £ L, y; = y; £ L in each case respectively. Points defined by
the same value of ¢ are identified, i.e. they represent the same points of
space. If the point (z;,y;) crosses either one of the circles ¢; or c,, then
we take the particle out from the other circle.

Crossing the circle ¢; is determined by the relation

d ? 2 2

138 CHAPTER 2. KINEMATICS

The angle 0 is calculated from the equation

0 — tan~! (Yi d) : (2.36)
Ty — 5

2

and the point (x;,y;) is mapped to the point (z,y;) where
d
o 5 Rcos?, Y=Y, (2.37)

as can be seen in figure 2.29. For mapping & — @, we first calculate the
vectors

é.= cosfz + sinfy ¢ = —cosfz + sinfy
g = —sinfz + cos@g)}_){é’ez sinfdz + cosfy , (2.38)
so that the velocity
T=0v.6+vgég — U =—v.6 +uvyéy, (2.39)

where the radial components are v, = v - é, and vy = U - ég. Therefore,
the relations that give the “emerging” velocity ¢" are:

v = vycosfl + wv,sind
vg = —Upsinf + wv,cosd
vl = wv.cosf + wvpsind - (2.40)
v, = —v.sinf + wvgcos

Similarly we calculate the case of entering from ¢, and emerging from
¢;. The condition now is:

2
(xi + g) +y? < R%. (2.41)

The angle 0 is given by

9:7T—tan_1< Yi) , (2.42)

IZ—*—g

and the point (x;,y;) is mapped to the point (z,y,) where

T, = %l + Rcos?, Vi =Y. (2.43)

2.4. APPLICATIONS 139

For mapping v — ", we calculate the vectors

L N o o N o
T B T T
so that the velocity
T=uv.é,+v96g — U =—v.¢6 +vpéy. (2.45)
The emerging velocity ¢" is:
v, = —vgzcosf + v,sinf
D it~ s 246)
v, = —wv,.sinf + wycosb

Y

Systematic errors are now coming from crossing the two mouths of the
wormbhole. There are no systematic errors from crossing the boundaries
|z| = L/2, ly| = L/2 (why?). Try to think of ways to control those errors
and study them.

The closed trajectories that we are looking for come from the initial
conditions

(Ll'o,yo,’ljo,(b> = <O707170) (247)
and they connect points 1 of figure 2.28. They are unstable, as can be
seen by taking ¢ — ¢ + €.

The closed trajectories that cross the wormhole and “wind” through
space can come from the initial conditions

(x07y077}07¢) - <_9707170>
($0,y0,vo,¢) = (257 _37 17900)
and cross the points 3 — 3 and 2 — 2 — 4 — 4 respectively. They are

also unstable, as can be easily verified by using the program that you will
write. The full program is listed below:

[/
// File Wormbhole. cpp

/1

#include <iostream >

140 CHAPTER 2. KINEMATICS

#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

#define PI 3.1415926535897932

void crossCi(double& x, double& vy,
double& vx, double& vy,
const double& dt, const double& R,

const double& d);
void crossC2(double& x, double& vy,
double& vx, double& vy,
const double& dt, const double& R,

const double& d);

int main() {
//
// Declaration of variables

double Lx,Ly,L,R,d;

double x0,y0,v0,theta;

double tO0,tf,dt;

double t,x,y,vx,vy;

double xci1,ycl,xc2,yc2,rl,r2;

int i;

string buf;

/1

//Ask user for input:
cout < ”# Enter L,d,R:\n”;

cin >> L >>d >> R; getline(cin,buf);
cout << "# Enter (x0,y0), vO, theta(degrees):\n”;
cin >> x0 >> y0 >> v0 >> theta; getline(cin,buf);

cout < 7’# Enter tf , 6 dt:\n”;
cin >> tf >> dt; getline(cin,buf);

cout < "# L= 7 KL K7 d= 7KL d

K7 R= 7 <R < endl;
cout < 7# x0= 7 <L x0 K 7 y0= 7 KL yo << endl;
cout < "# v0= 7 <K v0 <K 7 theta= "7

<< theta <L 7 degrees” << endl;
cout < T# tf= 7 KL tf K 7 dt= 7 KL dt << endl;
if(L <= d+2.0*R){cerr <L <= d+2*R \n”;exit(1);}
if (d <= 2.0*%R) {cerr <L'd <= 2*R \n”;exit (1) ;}
if (vo<= 0.0){cerr <Lv0<= 0 \n”;exit(1);}

/!

2.4. APPLICATIONS 141

// Initialize

theta = (PI/180.0)*theta;

i = 0;

t = 0.0;

X = x0 5y = yo0;

VX = vO0*cos(theta); vy = vO0*sin(theta);

cout < 7# x0= 7" <K x0 KK 7 y0= 7" KL yoO
KL 7 vlx= 7 KL vx KL 7 vly= 7 KL vy <L endl;

//Wormhole’s centers:

xcl = 0.5*d; yci = 0.0;
xc2 = —0.5*d; yc2 = 0.0;
//Box limits coordinates:
Lx = 0.5*L; Ly = 0.5*L;
// Test if already inside cut region:
ri = sqrt ((x—xc1) *(x—xc1)+(y—yc1) *(y—yc1));
r2 = sqrt ((x—xc2) *(x—xc2) +(y—yc2) *(y-yc2));
if (ri<= R){cerr <'rl <= R \n”;exit(1);}
if (ri<= R){cerr <’r2 <= R \n”;exit(1);}

// Test if outside box limits:
if (abs(x) >= Lx){cerr <K IxlI>= Lx \n”;exit(1);}
if (abs(y) >= Ly){cerr <K7lyl>= Ly \n”;exit(1);}
ofstream myfile(”Wormhole.dat”);
myfile.precision(17);
//
// Compute :
while(t < tf){
myfile << t <K 77
K x K77 yK7T
KLvx K77 KL vy KL endl;

i++4;
t = i*dt;
X += vx*dt; y += vy*dt;
// Toroidal boundary conditions:
if(x> Lx) x x — L;

if(x < -Lx) x =x + L;
ifCy > Ly) y =y — L;
if(y <-Ly)y =y +L;
ril = sqrt ((x—xc1) *(x—xc1)+(y—yc1) *(y—yc1));
r2 = sqrt ((x—xc2) *(x—xc2) +(y—yc2) *(y—yc2));

// Notice: we pass rl as radius of circle, not R
if (r1 < R)
crossCl(x,y,vx,vy,dt,rl,d);
else if(r2 < R)
crossC2(x,y,vx,vy,dt,r2,d);
// small chance here that still in C1 or C2, but OK since

142 CHAPTER 2. KINEMATICS

// another dt—advance given at the beginning of for—loop
b// while(t <= tf)

} // main ()
/]
void crossCi1(double& x, double& vy,

double& vx, double& vy,
const double& dt, const double& R,
const double& d) {

double vr,v0,theta,xc,yc;

cout << 7# Inside C1: (x,y,vx,vy,R)= "
Kx K77 Ky K77
KLvx K77 Kvy K77 KR KL endl;

xC = 0.5*d; // center of C1

yc = 0.0;

theta = atan2(y—yc,x—xc);

X = —xc — R*cos(theta); //new x—value, y invariant
// Velocity transformation:

vr = vx*cos(theta)+vy*sin(theta);

vO = —vx*sin(theta)+vy*cos(theta);

VX = vr*cos(theta)+vO*sin(theta);

vy = —vr*sin(theta)+v0*cos(theta);
//advance x.,y, hopefully outside C2:

X = x + vx*dt;

y =y + vy*dt;

cout < 7# Exit C2: (x,y,vx,vy)=7
Kx K77 Ky K77
K vx K77 KL vy K endl;
}//void crossC1()
/]
void crossC2(double& x, double& vy,
double& vx, double& vy,
const double& dt, const double& R,
const double& d) {

double vr,v0,theta,xc,yc;

cout << "# Inside C2: (x,y,vx,vy,R)= "
Kx K77 Ky K77
KLvx K7 7 <Lvy K77 LKKR KL endl;

XcC = —0.5*%d; // center of C2

yc = 0.0;

theta = PI-atan2(y—yc,x—xc);

bie = —xc + R*cos(theta); //new x—value, y invariant

// Velocity transformation:
vr = —vx*cos(theta)+vy*sin(theta);

2.4. APPLICATIONS 143

vO0 = vx*sin(theta)+vy*cos(theta);

VX = —vr*cos(theta)—vO0*sin(theta);

vy = —vr*sin(theta)+vO0*cos(theta);
//advance x,y, hopefully outside C1:

X = x + vx*dt;

v =y + vy*dt;

cout << 7# Exit C1: (x,y,vx,vy)= 7"
Kzx K77KKy K77

KL vx <77 K vy KL endl;
}//void crossC2()

It is easy to compile and run the program. See also the files Wormhole.csh
and Wormhole_animate.gnu of the accompanying software and run the
gnuplot commands:

gnuplot> file = "Wormhole.dat”

gnuplot> R=1;d=5;L=20;

gnuplot> ! ./Wormhole.csh

gnuplot> t0=0;dt=0.2;load "Wormhole_animate.gnu”

You are now ready to answer the rest of the questions that we asked in
our list.

144 CHAPTER 2. KINEMATICS

2.5 Problems

2.1 Change the program Circle.cpp so that it prints the number of full
circles traversed by the particle.

2.2 Add all the necessary tests on the parameters entered by the user
in the program Circle.cpp, so that the program is certain to run
without problems. Do the same for the rest of the programs given
in the same section.

2.3 A particle moves with constant angular velocity w on a circle that
has the origin of the coordinate system at its center. At time ¢y, = 0,
the particle is at (zg,y9). Write the program CircularMotion.cpp
that will calculate the particle’s trajectory. The user should enter the
parameters w, Zo, Yo, to, tf, 0t. The program should print the results
like the program Circle.cpp does.

2.4 Change the program SimplePendulum.cpp so that the user could
enter a non zero initial velocity.

2.5 Study the & — 0 limit in the projectile motion given by equations
(2.10). Expand e ** = 1 —kt+ 4 (kt)>+. .. and keep the non vanish-
ing terms as k — 0. Then keep the next order leading terms which
have a smaller power of k. Program these relations in a file
ProjectileSmallAirResistance.cpp. Consider the initial condi-
tions 7y = £+ ¢ and calculate the range of the trajectory numerically
by using the two programs
ProjectileSmallAirResistance.cpp, ProjectileAirResistance. cpp.
Determine the range of values of £ for which the two results agree
within 5% accuracy.

2.6 Write a program for a projectile which moves through a fluid with
fluid resistance proportional to the square of the velocity. Compare
the range of the trajectory with the one calculated by the program
ProjectileAirResistance.cpp for the parameters shown in figure

2.7 Change the program Lissajous.cpp so that the user can enter a
different amplitude and initial phase in each direction. Study the
case where the amplitudes are the same and the phase difference

2.5. PROBLEMS 145

in the two directions are /4, 7/2, 7, —m. Repeat by taking the am-
plitude in the y direction to be twice as much the amplitude in the
x direction.

2.8 Change the program ProjectileAirResistance.cpp, so that it can
calculate also the k = 0 case.

2.9 Change the program ProjectileAirResistance.cpp so that it can
calculate the trajectory of the particle in three dimensional space.
Plot the position coordinates and the velocity components as a func-
tion of time. Plot the three dimensional trajectory using splot
in gnuplot and animate the trajectory using the gnuplot script
animate3D.gnu.

2.10 Change the program ChargeInB.cpp so that it can calculate the
number of full revolutions that the projected particle’s position on
the x — y plane makes during its motion.

2.11 Change the program box1D_1.cpp so that it prints the number of
the particle’s collisions on the left wall, on the right wall and the
total number of collisions to the stdout.

2.12 Do the same for the program box1D_2.cpp. Fill the table on page
the number of calculated collisions and comment on the results.

2.13 Run the program box1D_1.cpp and choose L= 10, v0=1. Decrease
the step dt up to the point that the particle stops to move. For
which value of dt this happens? Increase v0=10,100. Until which
value of dt the particle moves now? Why?

2.14 Change the float declarations to double in the program box1D_1. cpp.
Make sure that all the constants that you use become double pre-
cision (e.g. 1.0f changes to 1.0). Compare your results to those
obtained in section @ Repeat problem 2[13. What do you ob-
serve?

2.15 Change the program box1D_1.cpp so that you can study non elastic
collisions v' = —ev, 0 < e < 1 with the walls.

2.16 Change the program box2D_1.cpp so that you can study inelastic
collisions with the walls, such that v, = —euv,, v; = —evy, 0<e< 1.

146

2.17

2.18

2.19

2.20

2.21

2.22

2.23

CHAPTER 2. KINEMATICS

Use the method of calculating time in the programs box1D_4.cpp
and box1D_5.cpp in order to produce the results in figure 2.21.

Particle falls freely moving in the vertical direction. It starts with
zero velocity at height h. Upon reaching the ground, it bounces
inelastically such that v; = —ev, with 0 < e <1 a parameter. Write
the necessary program in order to study numerically the particle’s
motion and study the cases e = 0.1,0.5,0.9, 1.0.

Generalize the program of the previous problem so that you can
study the case 7y = vp, £. Animate the calculated trajectories.

Study the motion of a particle moving inside the box of figure [2.30.
Count the number of collisions of the particle with the walls before
it leaves the box.

Figure 2.30: Problem 2.20.

Study the motion of the point particle on the “billiard table” of
figure 2.31. Count the number of collisions with the walls before
the particle enters into a hole. The program should print from
which hole the particle left the table.

Write a program in order to study the motion of a particle in the
box of figure 2.32. At the center of the box there is a disk on
which the particle bounces off elastically (Hint: use the routine
reflectVonCircle of the program Cylinder3D.cpp).

In the box of the previous problem, put four disks on which the
particle bounces of elastically like in figure 2.33.

2.5. PROBLEMS 147

»

L

X

Figure 2.31: Problem 2.21.

Figure 2.32: Problem 2.23.

2.24 Consider the arrangement of figure 2.34. Each time the particle
bounces elastically off a circle, the circle disappears. The game is
over successfully if all the circles vanish. Each time the particle
bounces off on the wall to the left, you lose a point. Try to find
trajectories that minimize the number of lost points.

148

CHAPTER 2.

Figure 2.33: Problem 2.03.

S

o ;
/;\‘/'\"7:>:Ly

o 0

LX

Figure 2.34: Problem 2.24.

KINEMATICS

Chapter 3
Logistic Map

Nonlinear differential equations model interesting dynamical systems in
physics, biology and other branches of science. In this chapter we per-
form a numerical study of the discrete logistic map as a “simple math-
ematical model with complex dynamical properties” [23] similar to the
ones encountered in more complicated and interesting dynamical sys-
tems. For certain values of the parameter of the map, one finds chaotic
behavior giving us an opportunity to touch on this very interesting topic
with important consequences in physical phenomena. Chaotic evolu-
tion restricts out ability for useful predictions in an otherwise fully deter-
ministic dynamical system: measurements using slightly different initial
conditions result in a distribution which is indistinguishable from the dis-
tribution coming from sampling a random process. This scientific field is
huge and active and we refer the reader to the bibliography for a more
complete introduction [23,24,25,26,27,28,29,40].

3.1 Introduction

The most celebrated application of the logistic map comes from the study
of population growth in biology. One considers populations which re-
produce at fixed time intervals and whose generations do not overlap.
The simplest (and most naive) model is the one that makes the rea-
sonable assumption that the rate of population growth dP(t)/dt of a

149

150 CHAPTER 3. LOGISTIC MAP

population P(t) is proportional to the current population:

dP(t)
i kP(t). 3.1
The general solution of the above equation is P(t) = P(0)e* showing
an exponential population growth for £ > 0 an decline for £ < 0. It
is obvious that this model is reasonable as long as the population is
small enough so that the interaction with its environment (adequate food,
diseases, predators etc) can be neglected. The simplest model that takes
into account some of the factors of the interaction with the environment
(e.g. starvation) is obtained by the introduction of a simple non linear
term in the equation so that
%}Et) = kP(t)(1 —bP(1)). (3.2)
The parameter k gives the maximum growth rate of the population and
b controls the ability of the species to maintain a certain population level.
The equation (B.2) can be discretized in time by assuming that each gen-
eration reproduces every J¢ and that the n-th generation has population
P, = P(t,) where t,, = to+ (n—1)dt. Then P(t,+1) =~ P(t,)+dtP'(t,) and
equation (B.1) becomes
Pn+1 = T'Pn R (33)

where » = 1 + kdt. The solutions of the above equation are well ap-
proximated by P, ~ Pye*" x e""U" g0 that we have population growth
when r > 1 and decline when r < 1. Equation (B.2) can be discretized
as follows:

Poy1 = Py(r —bP,). (3.4)
Defining z,, = (b/r)P, we obtain the logistic map
T = rx,(1—x,). (3.5)
We define the functions
f(x) =rz(1 —x), F(x,r)=rz(1—x) (3.6)

(their only difference is that, in the first one, r is considered as a given
parameter), so that

Tt = f(@n) = [P (@0or) = ... = U (21) = F) (x0), (3.7

3.1. INTRODUCTION 151

where we use the notation f(z) = f(x), f@(z) = f(f(z)), fO(z) =
f(f(f(x))), ... for function composition. In what follows, the derivative
of f will be useful:

_ OF(z,r)
- Oz

Since we interpret z,, to be the fraction of the population with respect
to its maximum value, we should have 0 < z, < 1 for each n. The
function f(z) has one global maximum for x = 1/2 which is equal to
f(1/2) = r/4. Therefore, if > 4, then f(1/2) > 1, which for an appro-
priate choice of z, will lead to x,4+1 = f(z,) > 1 for some value of n.
Therefore, the interval of values of r which is of interest for our model
is

f'(z) =r(l—2x). (3.8)

O0<r<4. (3.9

The logistic map (B.5) may be viewed as a finite difference equation
and it is a one step inductive relation. Given an initial value x(, a sequence
of values {zg, z1, ..., , ... } is produced. This will be referred] to as
the trajectory of z,. In the following sections we will study the properties
of these trajectories as a function of the parameter r.

The solutions of the logistic map are not known except in special
cases. For r = 2 we have

xTL =

(1—(1—m)™), (3.10)

DO | —

and forf] r = 4

. I, _
T, = sin’(2"n0), 0 =—sin"'\/zg. (3.11)
T
For r = 2, lim,,_,, z,, = 1/2 whereas for r = 4 we have periodic trajectories
resulting in rational § and non periodic resulting in irrational 6. For other
values of r we have to resort to a numerical computation of the trajectories
of the logistic map.

‘Note that if x,, > 1 then z,, 1 < 0, so that if we want x,, > 0 for each n, then we
should have z,, <1 for each n.

’In the bibliography, the term “splinter of z,” is frequently used.

*E. Schroder, “Uber iterierte Funktionen”, Math. Ann. 3 (1870) 296; E. Lorenz,
“The problem of deducing the climate from the governing equations”, Tellus 16 (1964)
1

152 CHAPTER 3. LOGISTIC MAP

3.2 Fixed Points and 2" Cycles

It is obvious that if the point z* is a solution of the equation x = f(z), then
T, = 2" = .4 = a* for every k > 0. For the function f(z) = rz(1 —)
we have two solutions

x7=0 and zy;=1-1/r. (3.12)

We will see that for appropriate values of r, these solutions are attractors
of most of the trajectories. This means that for a range of values for the
initial point 0 < z < 1, the sequence {z,,} approaches asymptotically one
of these points as n — oo. Obviously the (measure zero) sets of initial
values {xo} = {z7} and {zo} = {z}} result in trajectories attracted by z}
and z3 respectively. In order to determine which one of the two values
is preferred, we need to study the stability of the fixed points z] and 3.
For this, assume that for some value of n, z,, is infinitesimally close to
the fixed point z* so that

r, = 2" +e€,
Tpi1l = T+ €pqq- (3.13)

Since
Tny1 = f($n) = f(f[* + en) ~ f(l'*) + an/($*) = $* + Enf/(x*)) (314)

where we used the Taylor expansion of the analytic function f(z* + ¢,)
about z* and the relation z* = f(z*), we have that ¢, = ¢, f'(z*). Then

we obtain
6n+1

= [f(@")] . (3.15)

€n

Therefore, if |f/(z*)| < 1 we obtain lim,,_, €, = 0 and the fixed point z* is
stable: the sequence {x, 1} approaches z* asymptotically. If |f'(z*)| > 1
then the sequence {z,.;} deviates away from z* and the fixed point is
unstable. The limiting case |f'(z*)| = 1 should be studied separately and
it indicates a change in the stability properties of the fixed point. In the
following discussion, these points will be shown to be bifurcation points.

For the function f(z) = rz(1 —) with f/'(x) = r(1 — 2z) we have that
f'(0) =r and f'(1 —1/r) = 2 —r. Therefore, if » < 1 the point 7 = 0
is an attractor, whereas the point 25 = 1 — 1/r < 0 is irrelevant. When

3.2. FIXED POINTS AND 2N CYCLES 153

r > 1, the point 2} = 0 results in |f'(z])| = r > 1, therefore z] is unstable.
Any initial value zy near z] deviates from it. Since for 1 < r < 3 we have
that 0 < |f’(23)| = |2 — r| < 1, the point z} is an attractor. Any initial

value z, € (0, 1) approaches z3 =1—1/r. When r = r = 1 we have the

limiting case] = x5 = 0 and we say that at the critical value r) =1 the
fixed point x7 bifurcates to the two fixed points z7 and 3.

As r increases, the fixed points continue to bifurcate. Indeed, when
r =r® =3 we have that f'(x3) =2—r =—1and for r > r® the point
x5 becomes unstable. Consider the solution of the equation = = f®(z).
If 0 < 2* < 1 is one of its solutions and for some n we have that z,, = z*,
then x,.0 = Tpiyu = ... = Tpyop = ... = 2" and z,41 = Tpyg = ... =
Tpioks1 = ... = f(z*) (therefore f(z*) is also a solution). If 0 < z} <
x; < 1 are two such different solutions with z§ = f(z}), x; = f(z}), then
the trajectory is periodic with period 2. The points 3, =) are such that
they are real solutions of the equation

f(2)(x) _ 7’2:L’(1 _ :L’)(l _ T‘I(l _ 1‘)) =z, (316)

and at the same time they are not the solutions 7 = 0 25 = 1 —1/r of the
equationf z = f®(z), the polynomial above can be written in the form
(see [24] for more details)

x(m—(1—1)>(Ax2+Bx+C):O. (3.17)

r

By expanding the polynomials (8.16), (B.17) and comparing their coef-

ficients we conclude that A = —r%, B = r?(r + 1) and C = —r(r + 1).
The roots of the trinomial in (8.17) are determined by the discriminant
A =7r%(r +1)(r — 3). For the values of r of interest (1 < r < 4), the dis-
criminant becomes positive when r > r) = 3 and we have two different
solutions

o= (r+1)FvVr2—-2r—-3)/(2r) a=3,4. (3.18)

When r = r{”) we have one double root, therefore a unique fixed point.
The study of the stability of the solutions of z = f®(z) requires
the same steps that led to the equation (B.15) and we determine if the

“Because, if 2* = f(z*) = f®)(z*) = f(f(=*)) = f(z*) = 2* etc, the point z* is also
a solution of z* = f(™)(z*).

154 CHAPTER 3. LOGISTIC MAP

absolute value of f'(z) is greater, less or equal to one. By noting
thatfl f®'(z3) = f@'(x4) = f(x3)f'(z4) = —1 + 2r + 4, we see that for
r=r® =3, f&(zx) = f@(23) =1 and for r = ¥ = 1+ V6 ~ 3.4495,
f@"(z3) =f@'(x4) = —1. For the intermediate values 3 < r < 1 + /6 the
derivatives |f(?(z*)| < 1 for a = 3,4. Therefore, these points are stable
solutions of z = f®(x) and the points 2%, } bifurcate to 7, a = 1,2,3,4
for r = v’ = 3. Almost all trajectories with initial points in the interval
[0, 1] are attracted by the periodic trajectory with period 2, the “2-cycle”
{3, 273}

Using similar arguments we find that the fixed points 2}, o = 1,2, 3,4
bifurcate to the eight fixed points z,, a = 1,...,8 when r = r& =1+ 6.
These are real solutions of the equation that gives the 4-cycle z = f*)(x).
For r¥ < r < r® ~ 3.5441, the points z}, a = 5,...,8 are a stable 4-
cycle which is an attractor of almost all trajectories of the logistic mapﬁ.
V< <1 the 16 fixed points of the equation z = f(®(x)
give a stable 8-cycle, for r® < r < 1 a stable 16-cycle etd]. This
is the phenomenon which is called period doubling which continues ad

infinitum. The points r are getting closer to each other as n increases

so that lim,,_, rcn) =r. ~ 3.56994567. As we will see, r. marks the onset
of the non-periodic, chaotic behavior of the trajectories of the logistic
map.

Computing the bifurcation points becomes quickly intractable and we
have to resort to a numerical computation of their values. Initially we will
write a program that computes trajectories of the logistic map for chosen
values of r and z,. The program can be found in the file logistic.cpp
and is listed below:

*

Similarly, for 7"£4

#include <iostream >
#include <fstream >

*The chain rule dh(g(x))/dz = h'(g(x))g (z) gives that fP)(x3) = df(f(x3}))/dx =
FIOf) f(x5) = f/(x5) f'(«%) and similarly for f(2)'(x%). We can prove by induction

that for the n solutions z} , |, x5, ..., 23, that belong to the n-cycle of the equation z =
f™(x) we have that f™(2,1:) = f'(xny1) f(Tnia)... f'(x2,) for every i =1,...,n.
*The points z, « = 1,...,4 are unstable fixed points and 2-cycle.

"Generally, for P < < MY o & 356994567 we have 27 fixed points of

. n—1 . .
the equation x = f?")(z) and stable 2"~!-cycles, which are attractors of almost all
trajectories.

3.2. FIXED POINTS AND 2N CYCLES 155

09 ¢
0.14 |
08 |
012 |
07 b o
0.1 ¢ 06|
0.08 | o5 |
006 |] 04
il
0.04 1‘ =05 —— | 03|
‘ r=0.99 |
L r=1/0.9 -] L/
002 f| r= 1/0.88 021
ol e 121086 01 L ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50

Figure 3.1: (Left) Some trajectories of the logistic map with zo = 0.1 and various
values of r. We can see the first bifurcation for rél) =1froma}=0tox; =1—1/r.

(Right) Trajectories of the logistic map for r') < r = 3.5 < 7). The three curves start

from three different initial points. After a transient period, depending on the initial
point, one obtains a periodic trajectory which is a 2-cycle. The horizontal lines are the

expected values x5, = ((r + 1) F V72 — 2r — 3)/(2r) (see text).

#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main(){
int NSTEPS ,i;
double r,x0,x1;
string buf;

// —— Input:

cout << ”# Enter NSTEPS, r, x0:\n”;

cin >> NSTEPS >> r >> x0; getline(cin,buf);
cout < "# NSTEPS = ” << NSTEPS << endl;

cout << 7# r =" Kr << endl;

cout < 7# x0 =7 K x0 << endl;

/| ——— Initialize:

ofstream myfile(”’log.dat”);
myfile.precision(17);
// ———— Calculate:
myfile << 0 << x0;
for (i=1;i<=NSTEPS;i++){
x1 =1 * x0 * (1.0-x0);
myfile << i <K 7 7 K x1 << "\n”;

x0 = x1;

156 CHAPTER 3. LOGISTIC MAP

}
myfile.close();

} //main ()

The program is compiled and run using the commands:

> g++ logistic.cpp —o 1
> echo 7100 0.5 0.1” | ./1

The command echo prints to the stdout the values of the parameters
NSTEPS=100, r=0.5 and x0=0.1. Its stdout is redirected to the stdin
of the command ./1 by using a pipe via the symbol |, from which the
program reads their value and uses them in the calculation. The results
can be found in two columns in the file log.dat and can be plotted
using gnuplot. The plots are put in figure B.1 and we can see the first

two bifurcations when r goes past the values r and r®. Similarly, we

can study trajectories which are 2"-cycles when r crosses the values r& Y,

el i@] 08 f
06 . — 0.7 t
05 | 1 0.6
o4l 05 |
04 F |
03t
03}
02t
: 02t
0.1t 1 01l
oL ‘ ‘ ‘ ; ol ‘ ‘ ‘ 1
0 02 04 06 08 1 0 02 04 06 08 1

Figure 3.2: Cobweb plots of the logistic map for r = 2.8 and 3.3. (Left) The left plot
is an example of a fixed point z* = f(x*). The green line is y = f(x) and the blue line
is y = f®)(x). The trajectory ends at the unique non zero intersection of the diagonal
and y = f(z) which is 23 = 1 — 1/r. The trajectory intersects the curve y = f®)(z) at
the same point. y = f(?)(z) does not intersect the diagonal anywhere else. (Right) The
right plot shows an example of a 2-cycle. y = f(?)(x) intersects the diagonal at two
additional points determined by =3 and xj. The trajectory ends up on the orthogonal

(x5, 23), (23, 23), (21, 23), (23, 27).

Another way to depict the 2-cycles is by constructing the cobweb plots:
We start from the point (z(,0) and we calculate the point (zg, z1), where

3.2. FIXED POINTS AND 2N CYCLES 157

09l
08}
07}
06}
05}

y 04 r
03 r 1 03}

o8t |7
07} !
06

05

0.4 -

0.2 p ! VoA 0.2

01+, ~ 8 01 |
0 4 L L L 1 0 l")
0 0.2 0.4 0.6 0.8 1 0 1

Figure 3.3: (Left) A 4-cycle for r = 3.5. The blue curve is y = f®(z) which
intersects the diagonal at four points determined by z,, a = 5,6,7,8. The four cycle
passes through these points. (Right) a non periodic orbit for » = 3.7 when the system
exhibits chaotic behavior.

x1 = f(xo). This point belongs on the curve y = f(x). The point (z¢, x1) is
then projected on the diagonal y = x and we obtain the point (z1,z;). We
repeat n times obtaining the points (x,, z,+1) and (41, Tp41) on y = f(2)
and y = x respectively. The fixed points 2* = f(z*) are at the intersections
of these curves and, if they are attractors, the trajectories will converge
on them. If we have a 2"-cycle, we will observe a periodic trajectory
going through points which are solutions to the equation = = f?")(x).
This exercise can be done by using the following program, which can be
found in the file logisticl.cpp:

!/l
// Discrete Logistic Map: Cobweb diagram
// Map the trajectory in 2d space (plane)
!/l
#include <iostream >
#include <fstream>
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main(){
int NSTEPS ,1i;
double r,x0,x1;

158 CHAPTER 3. LOGISTIC MAP

string buf;

I —— Input:

cout < ”# Enter NSTEPS, r, x0:\n”;

cin >> NSTEPS >> r >> x0; getline(cin,buf);
cout < 7# NSTEPS = 7 << NSTEPS << endl;

cout << 7# r =7 Kr << endl;

cout < "# x0 =7 K x0 << endl;

/| —— Initialize:

ofstream myfile(”trj.dat”);

myfile.precision(17);

/] — Calculate:

myfile << O K770 KT TKLO KL '\ny

for (i=1;i<=NSTEPS;i++){
x1 =1 * x0 * (1.0-x0);
myfile << 2*i—3 << 7 7 K x0 <K 7 7KL x1 KL \nCy
myfile << 2*i—2 < 7 7 KL x1 K7 7KL x1 KL \nCy
x0 = x1;

}

myfile.close();

} // main ()

Compiling and running this program is done exactly as in the case
of the program in logistic.cpp. We can plot the results using gnuplot.
The plot in figure can be constructed using the commands:

gnuplot> set size square

gnuplot> f(x) = r*x*(1.0—x)

gnuplot> r = 3.3

gnuplot> plot “<echo 50 3.3 0.21./1;cat trj.dat” using 2:3 w 1
gnuplot> replot £(x) ,£(£(x)),x

The plot command shown above, runs the program exactly as it is done
on the command line. This is accomplished by using the symbol <,
which reads the plot from the stdout of the command "echo 50 3.3
0.2]./1;cat trj.dat". Only the second command "echo trj.dat"
writes to the stdout, therefore the plot is constructed from the contents of
the file trj.dat. The following line adds the plots of the functions f(z),
f@(z) = f(f(x)) and of the diagonal y = z. Figures and B.3 show
examples of attractors which are fixed points, 2-cycles and 4-cycles. An
example of a non periodic trajectory is also shown, which exhibits chaotic
behavior which can happen when r > r. ~ 3.56994567.

3.3. BIFURCATION DIAGRAMS 159

3.3 Bifurcation Diagrams

The bifurcations of the fixed points of the logistic map discussed in the
previous section can be conveniently shown on the “bifurcation diagram”.
We remind to the reader that the first bifurcations happen at the critical
values of r

r) <@ < r® < <M< <, (3.19)

where 7tV = 1, v = 3, 7Y =1+ V6 and r, = lim,_,.. ") & 3.56994567.
For " < r < "™ we have 2" fixed points z*, o = 1,2,...,2" of z =
f@"(z). By plotting these points z* (r) as a function of r we construct the
bifurcation diagram. These can be calculated numerically by using the
program bifurcate.cpp. In this program, the user selects the values of
r that she needs to study and for each one of them the program records
the point of the 2" '-cyclesf| z%(r), @ = 2771 41,21 4 2,...,2". This
is easily done by computing the logistic map several times until we are
sure that the trajectories reach the stable state. The parameter NTRANS
in the program determines the number of points that we throw away,
which should contain all the transient behavior. After NTRANS steps, the
program records NSTEPS points, where NSTEPS should be large enough
to cover all the points of the 2" !-cycles or depict a dense enough set of

values of the non periodic orbits. The program is listed below:

//
// Bifurcation Diagram of the Logistic Map
//
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main(){
const double rmin = 2,53
const double rmax
const double NTRANS = 500; //Number of discarted steps

Il
B~
(=]

*If we want to be more precise, the bifurcation diagram contains also the unstable
points. What we really construct is the orbit diagram which contains only the stable
points.

160 CHAPTER 3. LOGISTIC MAP

const double NSTEPS 100; //Number of recorded steps
const double RSTEPS = 2000; //Number of values of r

int i;

double r,dr,x0,x1;

// ————— Initialize:

dr = (rmax—rmin) /RSTEPS; //Increment in r
ofstream myfile(”’bif.dat”);
myfile.precision(17);

/] ———— Calculate:
r = rmin;
while(r <= rmax) |
x0 = 0.5;
// —— Transient steps: skip

for (i=1;i<=NTRANS ;i++){
x1 =1 * x0 * (1.0-x0);
x0 = x1;
}
for (i=1;i<=NSTEPS;i++){
x1 =1 * x0 * (1.0—x0);
myfile <K r << 7 7 K x1 <K "\n’;
x0 = x1;
}
r += dr;
}//while(r <= rmax)
myfile.close();
} //main ()

The program can be compiled and run using the commands:

> g++ bifurcate.cpp —o b
> /Db

The left plot of figure B.4 can be constructed by the gnuplot commands:

gnuplot> plot “bif.dat” with dots

We observe the fixed points and the 2"-cycles for r < r.. When r goes
past ., the trajectories become non-periodic and exhibit chaotic behavior.
Chaotic behavior will be discussed more extensively in the next section.
For the time being, we note that if we measure the distance between the

points Ar(® = r&™D — i we find that it decreases constantly with n so

3.3. BIFURCATION DIAGRAMS 161

0.515 -

051

0.505

05 |

0.495 -

0.485 -

0.48

L L L L L L L L L
3.6295 3.63 3.6305 3.631 3.6315 3.632 3.6325 3.633 3.6335 3.634

Figure 3.4: (Left) The bifurcation diagram computed by the program bifurcate.cpp
for 2.5 < r < 4. Notice the first bifurcation points followed by intervals of chaotic, non-
periodic orbits interrupted by intermissions of stable periodic trajectories. The chaotic
trajectories take values in subsets of the interval (0, 1). For r = 4 they take values within
the whole (0,1). One can see that for r = 1 4 /8 ~ 3.8284 we obtain a 3-cycle which
subsequently bifurcates to 3 - 2"-cycles. (Right) The diagram on the left is magnified in
a range of r showing the self-similarity of the diagram at all scales.

that
. Ar™
Jlim =y = 0~ 4.669 201 609, (3.20)
where § is the Feigenbaum constant. An additional constant «, defined
by the quotient of the separation of adjacent elements Aw, of period

doubled attractors from one double to the next Aw, 1, is
. Aw,
lim

n—o0 AWy, 11

= a =~ 2.502907875. (3.21)

It is also interesting to note the appearance of a 3-cycle right after r» =
1+ /8 ~ 3.8284 > r,! By using the theorem of Sharkovskii, Li and
Yorkeﬁ showed that any one dimensional system has 3-cycles, therefore
it will have cycles of any length and chaotic trajectories. The stability of
the 3-cycle can be studied from the solutions of z = f®)(z) in exactly the
same way that we did in equations (3.16) and (B.17) (see [24] for details).
Figure magnifies a branch of the 3-cycle. By magnifying different
regions in the bifurcation plot, as shown in the right plot of figure @, we
find similar shapes to the branching of the 3-cycle. Figure @shows that

°T.Y. Li, J.A. Yorke, “Period Three Implies Chaos”, American Mathematical Monthly
82 (1975) 985.

162 CHAPTER 3. LOGISTIC MAP

052 |
0.51 |
05 |
0.49 |
0.48 |

0.47

0.46

3.83 3.835 3.84 3.845 3.85

Figure 3.5: Magnification of one of the three branches of the 3-cycle for r > 1 + V8.
To the left, we observe the temporary halt of the chaotic behavior of the trajectory, which
comes back as shown in the plot to the right after an intermission of stable periodic
trajectories.

between intervals of chaotic behavior we obtain “windows” of periodic
trajectories. These are infinite but countable. It is also quite interesting
to note that if we magnify a branch withing these windows, we obtain a
diagram that is similar to the whole diagram! We say that the bifurcation
diagram exhibits self similarity. There are more interesting properties of
the bifurcation diagram and we refer the reader to the bibliography for
a more complete exposition.

We close this section by mentioning that the qualitative properties
of the bifurcation diagram are the same for a whole class of functions.
Feigenbaum discovered that if one takes any function that is concave and
has a unique global maximum, its bifurcation diagram behaves qualita-
tively the same way as that of the logistic map. Examples of such func-
tionsf] studied in the literature are g(z) = ze"~?), u(z) = rsin(rz) and
w(z) = b — 2% The constants § and o of equations (3.20) and (B.21)
are the same of all these mappings. The functions that result in chaotic
behavior are studied extensively in the literature and you can find a list
of those in [30].

' The function z exp(r(1 —z)) has been used as a model for populations whose large
density is restricted by epidemics. The populations are always positive independently
of the (positive) initial conditions and the value of r.

3.4. THE NEWTON-RAPHSON METHOD 163

3.4 The Newton-Raphson Method

In order to determine the bifurcation points, one has to solve the nonlin-
ear, polynomial, algebraic equations z = f((z) and f™'(z) = —1. For
this reason, one has to use an approximate numerical calculation of the
roots, and the simple Newton-Raphson method will prove to be a good
choice.

Newton-Raphson’s method uses an initial guess x, for the solution of
the equation g(x) = 0 and computes a sequence of points z1, o, ..., Zp,
Tnt1, - .. that presumably converges to one of the roots of the equation.
The computation stops at a finite n, when we decide that the desired level
of accuracy has been achieved. In order to understand how it works, we
assume that g(z) is an analytic function for all the values of x used in
the computation. Then, by Taylor expanding around z,, we obtain

9(Tni1) = g(zn) + (Tng1 — mn)!]/(m) o (3.22)
If we wish to have g(z,.1) ~ 0, we choose

g(wy)

. 3.23
) (3.23)

Tn41 = Ty —

The equation above gives the Newton-Raphson method for one equation
g(x) = 0 of one variable z. Different choices for =, will possibly lead to
different roots. When ¢'(z), ¢”(z) are non zero at the root and ¢"'(z) is
bounded, the convergence of the method is quadratic with the number
of iterations. This means that there is a neighborhood of the root o such
that the distance Az, = 7,41 — a is Az, o< (Az,)% If the root a
has multiplicity larger than 1, convergence is slower. The proofs of these
statements are simple and can be found in [31].

The Newton-Raphson method is simple to program and, most of the
times, sufficient for the solution of many problems. In the general case
it works well only close enough to a root. We should also keep in mind
that there are simple reasons for the method to fail. For example, when
g'(z,) = 0 for some n, the method stops. For functions that tend to
0 as z — =oo, it is easy to make a bad choice for z, that does not
lead to convergence to a root. Sometimes it is a good idea to combine the
Newton-Raphson method with the bisection method. When the derivative
¢'(z) diverges at the root we might get into trouble. For example, the

164 CHAPTER 3. LOGISTIC MAP

equation |z|* = 0 with 0 < v < 1/2, does not lead to a convergent
sequence. In some cases, we might enter into non-convergent cycles [8].
For some functions the basin of attraction of a root (the values of z, that
will converge to the root) can be tiny. See problem [L3.

As a test case of our program, consider the equation

etane = /p? — €2 (3.24)

which results from the solution of Schrodinger’s equation for the en-
ergy spectrum of a quantum mechanical particle of mass m in a one
dimensional potential well of depth 1|, and width L. The parameters
e = /mL?E/(2h) and p = \/mL?V,/(2h). Given p, we solve for ¢ which
gives the energy E. The function g(x) and its derivative ¢'(z) are

g(x) = ztanz — +/p? — a2
, T x
= t : 3.25
g9'(z) p2—x2+0052$+ an (3.25)

The program of the Newton-Raphson method for solving the equation
g(x) = 0 can be found in the file nr. cpp:

/]
//Newton Raphson of function of one variable
/]
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main() {

const double rho = 15.0;

const double eps = 1.0e—6;
const int NMAX = 1000;
double x0, x1, err, g, gp;

int i;

string buf;

/| —— Input:

cout << 7# Enter x0:\n”;

cin >> x0; getline(cin,buf);

err = 1.0;

3.4. THE NEWTON-RAPHSON METHOD 165

cout < iter X error \n”;
cout <K 7 \n";
cout << O O < x0 L7 <L err << '\n’;

cout.precision(17);

for (i=1;i<=NMAX;i++){
//value of function g(x):
g = x0*tan(x0)—sqrt(rho*rho—x0*x0);
//value of the derivative g’(x):

gp = x0/sqrt(rho*rho—x0%*x0)+x0/(cos(x0)*cos(x0))+tan(x0);
x1 = x0 — g/gp;
err = abs(x1—x0);

cout << 1 <KL 77K x1 KL KL err K '\n'y
if (err < eps) break;
x0 = x1;
}
} //main ()

In the program listed above, the user is asked to set the initial point
xo. We fix p = rho = 15. It is instructive to make the plot of the left and
right hand sides of (8.24) and make a graphical determination of the roots
from their intersections. Then we can make appropriate choices of the
initial point z¢. Using gnuplot, the plots are made with the commands:

gnuplot> gi(x) = x*tan(x)
gnuplot> g2(x) = sqrt(rho*rho—x*x)
gnuplot> plot [0:20][0:20] g1(x), g2(x)

The compilation and running of the program can be done as follows:

> g++ nr.cpp —o n

> echo 71.471./n

Enter x0:

iter X error

1.4 1

1.5254292024457967 0.12542920244579681
1.5009739120496131 0.02445529039618366
1.48072070172022 0.02025321032939309
1.4731630533073483 0.0075576484128716537
1.4724779331237687 0.00068512018357957949
1.4724731072313519 4.8258924167932093e—06
1.4724731069952235 2.3612845012621619e—10

N O OURs W = O

166 CHAPTER 3. LOGISTIC MAP

20
15 ‘ |

ol

Figure 3.6: Plots of the right and left hand sides of equation (B.24). The intersections
of the curves determine the solutions of the equation and their approximate graphical
estimation can serve as initial points xy for the Newton-Raphson method.

We conclude that one of the roots of the equation is € ~ 1.472473107.

The reader can compute more of these roots by following these steps by

herself.
The method discussed above can be easily generalized to the case

of two equations. Suppose that we need to solve simultaneously two
algebraic equations ¢, (x1,x2) = 0 and ga(x1,22) = 0. In order to compute
a sequence (Ilo, 1’20), (.IH, .7321), Ceey (Ilna ZE‘Qn), (ZEl(n+1)7 .I'Q(n+1)), ... that may
converge to a root of the above system of equations, we Taylor expand

the two functions around (z1,,, z2,)

og ($1n7 szn)

91 (T1(n41), Tont1)) = G1(T1ns Ton) + (Ti(ng1) — T1n) D,
agl (Ilna $2n)
+ (Ta(nt1) — Tan) o, +
892(1[’1”, xZn)
92(I1(n+1), $2(n+1)) = gz(l’ln, $2n) + (xl(n+1) - 9131n)a—I1
0ga2(T1pn, Top
+ (wz(n+1) — xgn)%(al—” +.... (3.26)
T2

Defining 6z1 = (#1(n41) — 1n) and 0z = (Tom41) — T2n) and setting

3.4. THE NEWTON-RAPHSON METHOD 167

91(T1(n+1), To(nt1)) = 0, g2(T1(nt1), Ta(nr1)) = 0, we obtain

g1 dg1 .

5x18_3m+5x26_x2 = —01

50, 292 4 52,992 (3.27)
8x1 8.’132

This is a linear 2 x 2 system of equations

Allél'l + A125$2 = bl
A215$1 + A225$2 = bg, (328)

where A;; = 0g¢;/0z; and b, = —g,;, with ¢,j7 = 1,2. Solving for dz; we
obtain

Tiy1l) = Tin +0T1
To(nt1) = Ton +0Tz. (3.29)

The iterations stop when dx; become small enough.

As an example, consider the equations with ¢;(z) = 22? — 3zy +y — 2,
g2(x) =3x+zy+y—1. We have Ay =4z —3y, Ajo =1—3z, Ay =3+,
Ay =1+ x. The program can be found in the file nr2. cpp:

/1
//Newton Raphson of two functions of two variables
/1
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

void solve2x2(double A[2][2],double b[2],double dx[2]);

int main(){
const double eps = 1.0e—6;
const int NMAX = 1000;
double A[2][2].b[2],dx[2];
double x, y, err;
int i;
string buf;

168 CHAPTER 3. LOGISTIC MAP

J —— Input:

cout < 7’# Enter x0,y0:\n”;

cin >> x >> y; getline(cin,buf);

err = 1.0;

cout << iter X y error \n”;
cout < 7 \n”";

cout <K 0 K7 7" KLKLx K7 T KLy LT LKL err << '\n’;

cout.precision(17);
for(i=1;i<=NMAX;i++){

b[0] = —(2.0*x*x—3.0*x*y + y — 2.0); // —gl(x,y)
b[1] = —(3.0*x + x*y +y — 1.0); // —g2(x.y)
/] dgi/dx dg1/dy

ATO][O] = 4.0*x—3.0*y; A[O][1] = 1.0—-3.0*x;

// dg2/dx dg2/dy

A[11[0] = 3.0 + y; A[1][1] = 1.0+ x;
solve2x2(A,b,dx);
x += dx[0];
y += dx[1];
err = 0.5*%sqrt(dx[0]*dx[0]+dx[1]*dx[1]) ;
cout <€ 1 K77 <Kx K7 7TKy K77 KL err KK endl;
if (err < eps) break;
}
} //main ()
void solve2x2(double A[2][2],double b[2],double dx[2]){
double numO,numi,det;

numO = A[1][1] * b[O] — A[O][1] * b[1];

numl = A[O][O0] * b[1] — A[1][0] * b[O];

det = A[O][O] * A[1][1] — A[OJ[1] * A[1][O];

if (det == 0.0){cerr << ”solve2x2: det=0\n";exit (1);}
dx[0] = numO/det;

dx[1] = numl/det;

}//solve2x2 ()

In order to guess the region where the real roots of the systems lie, we
make a 3-dimensional plot using gnuplot:

gnuplot> set isosamples 20
gnuplot> set hidden3d
gnuplot> splot 2*x**2_-3*x*y+y—2,3*x+y*x+y—1.,0

We plot the functions g;(z,y) together with the plane z = 0. The in-

3.5. CALCULATION OF THE BIFURCATION POINTS 169

tersection of the three surfaces determine the roots we are looking for.
Compiling and running the program can be done by using the com-
mands:

> g++ nr2.cpp —o n

> echo 2.2 1.5 |./n
Enter x0,y0:
iter X y error
0 2.20000000 1.50000000 1.0000
1 0.76427104 0.26899383 0.9456
2 0.73939531 —0.68668275 0.4780
3 0.74744506 —0.71105605 1.2834e—2
4 0.74735933 —0.71083147 1.2019e—4
5 0.74735932 —0.71083145 1.2029e-8
> echo 01 |./n
—0.10899022 1.48928857 4.3461e—12

5
> echo -5 0Ol./n
6 —6.13836909 —3.77845711 3.2165e—13

The computation above leads to the roots (0.74735932, —0.71083145),
(—0.10899022, 1.48928857), (—6.13836909, —3.77845711).

The Newton-Raphson method for many variables becomes hard quite
soon: One needs to calculate the functions as well as their derivatives,
which is prohibitively expensive for many problems. It is also hard to
determine the roots, since the method converges satisfactorily only very
close to the roots. We refer the reader to [8] for more information on
how one can deal with these problems.

3.5 Calculation of the Bifurcation Points

In order to determine the bifurcation points for » < r. we will solve
the algebraic equations z = f*)(z) and f*’(z) = —1. At these points,
k-cycles become unstable and 2k-cycles appear and are stable. This hap-
pens when r = r"”, where k = 2"~2, We will look for solutions (z*,r{")
for o =k+1,k+2,.... 2,

We define the functions F(z,r) = f(z) = ro(1 — z) and F®) (z,7r)

170 CHAPTER 3. LOGISTIC MAP

f®)(z) as in equation (8.6). We will solve the algebraic equations:

gi(z,r) = x— F(k)(:t,r) =0
OF®) (1)

gao(z,7) = — +1=0. (3.30)

According to the discussion of the previous section, in order to calculate
the roots of these equations we have to solve the linear system (3.28),
where the coefficients are

by = —gi(x,r)=—x+F®(x,r)
OF®) (x,7)
= — = Y7 7 _1
b2 g2 (':Eﬂ T) 81’
~ Ogi(w,r) OF®) (2, 7)
An = or L ox
A _ 891(35,7’) _ _aF(k)<$,T)
2 or or
A _ ag?(l‘7 T) _ aQF(k) (JZ, ’I")
A or 0x?
dgale,r) PFWO(z,7)
Ay = = . 31
22 or Oxor (3.31)

The derivatives will be calculated approximately using finite differences

OF®)(x,r) F®(z4er)—F®(z—er)
Ox - 2¢
OF®) (1) F® (2,0 +¢) — F®)(z r —¢)

(3.32)

Q

or 2¢ '

3.5. CALCULATION OF THE BIFURCATION POINTS

and similarly for the second derivatives

OF () (p4 & AF(R) (z— & 1)
PFW(ey) gD - S

02 - 2¢

171

€ € €

1
= —Q{F(k)(:z:—i-e,r)—2F(k)(x,r)+F(k)(x—e,r)}
€

PFW(x,r) OF M) (atep,r) IFW) (w—epyr)

~ or ar
o0xOr 2¢,
1 (FY@+er+e)—FP(x+e,r—¢)
T 2, { 2¢,
F®O(z —e,r+e)— FF(z—epr—e)
a 2¢, }
1

= {FP@+er+e)— FO (@ +epnr—e)
de €,

—FP (@ —er+e)+ FP (2 —epr—¢)}

1 {F(k)(:z; +er)—F®(z,r) F®(xr)— F® (g - e,r)}

(3.33)

We are now ready to write the program for the Newton-Raphson method
like in the previous section. The only difference is the approximate cal-
culation of the derivatives using the relations above and the calculation
of the function F'*)(x,r) by a routine that will compose the function f(x)
k-times. The program can be found in the file bifurcationPoints.cpp:

/1

// bifurcationPoints.cpp

// Calculate bifurcation points of the discrete logistic map

// at period k by solving the condition

/] gi(x,r) = x — F(k,x,r) =0

/] g2(x,r) = dF(k,x,r)/dx+1 = 0

// determining when the Floquet multiplier bacomes 1
// F(k,x,r) iterates F(x,r) = r*x*(x—1) k times

// The equations are solved by using a Newton—Raphson method

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>

172 CHAPTER 3. LOGISTIC MAP

#include <cmath>

using namespace std;

double F (const int& k,const double& x,const double& r);
double dFdx (const int& k,const double& x,const double& r);
double dFdr (const int& k,const double& x,const double& r);
double d2Fdx2 (const int& k,const double& x,const double& r);
double d2Fdrdx(const int& k,const double& x,const double& r);
void solve2x2 (double A[2][2],double b[2],double dx[2]);

int main() {
const double tol = 1.0e—-10;
double r0,x0;
double A[2][2],B[2],dX[2];
double error;
int k,iter;

string buf;

/[——— Input:

cout < 7’# Enter k,r0,x0:\n”;

cin >> k >> r0 >> x0; getline(cin,buf);
cout < ”’# Period k=~ << k <K endl;
cout < "# r0= 7" <K r0 <K 7 x0= " < %0 < endl;
/| ——— Initialize

error = 1.0; //initial large value of error>tol
iter = 0;

cout.precision(17);
while (error > tol){

// —— Calculate jacobian matrix
A[0][0] = 1.0 —dFdx(k,x0,r0);
A[O][1] = —dFdr (k,x0,r0);
A[1][0] = d2Fdx2 (k,x0,10);
A[1][1] = d2Fdrdx (k,x0,r0);
B[O] = —x0 + F(k,x0,r0);
B[1] = —dFdx (x,x0,r0) —1.0;
// —— Solve a 2x2 linear system:
solve2x2(A,B,dX);

x0 = x0 + dX[O0];

r0 =10 + dX[1];

error = 0.5*sqrt(dX[0]*dX[0]+dX[1]*dX[1]);
iter++;

cout <Kiter
KL 7 x0= 7 KL %0
KL 7 r0= 7 KL ro
<KL 7 err= 7 KK error <K '\n’;
} // while(error > tol)

3.5. CALCULATION OF THE BIFURCATION POINTS 173

} // main ()
/]
// Function F(k,x,r) and its derivatives
double F (const int& k,const double& x,const double& r){
double x0;
int i;
x0 = x;
for(i=1;i<=k;i++) x0 = r*x0*(1.0 —x0);
return xO0;

}

/]

double dFdx (const int& k,const double& x,const double& r){
double eps;
eps = 1.0e—6*x;
return (F(k,x+teps,r)—F(k,x—eps.r))/(2.0%eps);

}

/]

double dFdr (const int& k,const double& x,const double& r){
double eps;
eps = 1.0e—6*r;
return (F(k,x,r+eps)—F(k,x,r—eps))/(2.0%eps);

}

!/l

double d2Fdx2 (const int& k,const double& x,const double& r){
double eps;
eps = 1.0e—6*x;

return (F(k,x+eps,r)—2.0*F(k,x,r)+F(k,x—eps,r))/(eps*eps);
}

/1
double d2Fdrdx(const int& k,const double& x,const double& r){
double epsx,epsr;
epsx = 1.0e—6*x;
epsr = 1.0e—6*r;
return (F(k,x+epsx,r+epsr)—F(k,x+epsx,r—epsr)
—F(k,x—epsx,r+epsr)+F(k,x—epsx,r—epsr))
/(4.0*epsx*epsr);

}

/1l

void solve2x2(double A[2][2],double b[2],double dx[2]){
double numO ,numil,det;

numO0 = A[1][1] * b[O] — A[O][1] * b[1];
numli = A[O][0] * b[1] — A[1]1[0] * b[O];
det = A[O][O] * A[1]1[1] — A[O][1] * A[1][O];

if (det == 0.0){cerr << 7solve2x2: det=0\n";exit(1);}

174 CHAPTER 3. LOGISTIC MAP

dx[0]
dx[1]

numO/det;
numl /det;

}//solve2x2 ()

Compiling and running the program can be done as follows:

> g++ bifurcationPoints.cpp —o b

> echo 2 3.5 0.5 |./b

Enter k,r0,x0:

Period k= 2

r0= 3.5000000000000 x0= 0.50000000000

1 x0= 0.4455758353187 r0= 3.38523275827 err= 6.35088e—2
2 x0= 0.4396562547624 r0= 3.45290970406 err= 3.39676e—2
3 x0= 0.4399593001407 r0= 3.44949859951 err= 1.71226e—3
4 x0= 0.4399601690333 r0= 3.44948974267 err= 4.44967e—6
5 x0= 0.4399601689937 r0= 3.44948974281 err= 7.22160e—11
> echo 2 3.5 0.85 | ./b

4 x0= 0.8499377795512 r0= 3.44948974275 err= 1.85082e—11
> echo 4 3.5 0.5 I./b

5 x0= 0.5235947861540 r0= 3.54409035953 err= 1.86318e—11
> echo 4 3.5 0.35 | ./b

5 x0= 0.3632903374118 r0= 3.54409035955 err= 5.91653e—13

The above listing shows the points of the 2-cycle and some of the points

of the 4-cycle. It is also possible to compare the calculated value r¥ =

3.449490132 with the expected one r'” = 14+v/6 ~ 3.449489742. Improving
the accuracy of the calculation is left as an exercise for the reader who
has to control the systematic errors of the calculations and achieve better
accuracy in the computation of r.

3.6 Liapunov Exponents

We have seen that when r > r. =~ 3.56994567, the trajectories of the lo-
gistic map become non periodic and exhibit chaotic behavior. Chaotic
behavior mostly means sensitivity of the evolution of a dynamical system
to the choice of initial conditions. More precisely, it means that two dif-
ferent trajectories constructed from infinitesimally close initial conditions,

3.6. LIAPUNOV EXPONENTS 175

diverge very fast from each other. This implies that there is a set of initial
conditions that densely cover subintervals of (0,1) whose trajectories do
not approach arbitrarily close to any cycle of finite length.

Assume that two trajectories have x, 7 as initial points and Az, =
xo — Zo. When the points z,, 7, have a distance Az,, = z,, — z,, that for
small enough n increases exponentially with n (the “time”), i.e.

Az, ~ Azge™, A>0, (3.34)

the system is most likely exhibiting chaotic behaviorf]. The exponent A
is called a Liapunov exponent. A useful equation for the calculation of A
is

A= lim ~ > In|f' ()] (3.35)

This relation can be easily proved by considering infinitesimal ¢ = |Az|

so that A = lim lim 1 In|Ax,|/e. Then we obtain
n—o0 e—0 "

1 = f(@o) = f(zo+€) = f(xo) + €f'(20)
= o + ef'(z0) =
% = xlle ~ f'(x0)
Ty = f(T1) = flxr +ef'(x0)) = f(x1) + (ef'(20)) [(1)
= xa+ef'(0)f (11) =
Al’z .CEQ — X2

= — [(o) f' (1)

Ty = [f(T2) = flza +ef (xo) f/(21)) = f(22) + (ef (w0) ['(21)) [(w2)
= a3t ef'(zo) f'(x1) f'(w2) =

AZEg T3 — I3

- = - ~ f'(zo) f' (1) f'(w2) - (3.36)

We can show by induction that |Ax,|/e ~ f'(zo)f'(z1)f (x2) ... f'(xpn-1)
and by taking the logarithm and the limits we can prove (8.35).

"Sensitivity to the initial condition alone does not necessarily imply chaos. It is
necessary to have topological mixing and dense periodic orbits. Topological mixing
means that every open set in phase space will evolve to a set that for large enough time
will have non zero intersection with any open set. Dense periodic orbits means that
every point in phase space lies infinitesimally close to a periodic orbit.

176 CHAPTER 3. LOGISTIC MAP

le+16 - - - -
le+14 ¢
le+12
le+10 r
1le+08 r
1e+06
10000

100 ¢

A, |/

0.01 :
0O 20 40 60 80 100 120 140 160 180 200

n

Figure 3.7: A plot of |Az,|/e for the logistic map for r = 3.6, zp = 0.2. Note the
convergence of the curves as ¢ — 0 and the approximate exponential behavior in this
limit. The two lines are fits to the equation () and give A = 0.213(4) and A = 0.217(6)
respectively.

A first attempt to calculate the Liapunov exponents could be made
by using the definition (). We modify the program logistic.cpp so
that it calculates two trajectories whose initial distance is ¢ = epsilon:

//
// Discrete Logistic Map:

//Two trajectories with close initial conditions.
/]
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main() {

3.6. LIAPUNOV EXPONENTS 177

int NSTEPS ,i;
double r,x0,x1,x0t,xlt,epsilon;
string buf;

J —— Input:

cout < 7# Enter NSTEPS, r, x0, epsilon:\n”;

cin >> NSTEPS > r >> x0 >> epsilon;getline(cin,buf);
cout < "# NSTEPS = ” < NSTEPS << endl;

cout <K "# r =7 K r << endl;

cout < "# x0 = 7 K x0 << endl;

cout < 7# epsilon = 7 < epsilon << endl;

x0t = xO+epsilon;

/] ——— Initialize:

ofstream myfile(”lia.dat”);

myfile.precision(17);

/| ——— Calculate:

myfile K1 L7 K x0 K77 KLx0t KL
<< abs(x0t—x0)/epsilon << "\n”;

for (i=2;i<=NSTEPS;i++){

x1 =1 * x0 * (1.0—x0);

xlt = r * x0t * (1.0—x0t);

myfile << i <KL 77 KLzx1 K77 KL xlt LT
<< abs(x1t—x1)/epsilon << "\n”;

x0 = x1; x0t = x1t;

}
myfile.close();

} //main ()

After running the program, the quantity |Ax,|/e is found at the fourth
column of the file 1ia.dat. The curves of figure .7 can be constructed
by using the commands:

> g++ liapunovl.cpp —o 1
> gnuplot
gnuplot> set logscale y
gnuplot> plot \
”Cecho 200 3.6 0.2 1e—15 |./1;cat lia.dat” u 1:4 w 1

The last line plots the stdout of the command "echo 200 3.6 0.2 le-15
|./1;cat lia.dat", i.e. the contents of the file 1ia.dat produced after
running our program using the parameters NSTEPS = 200, r = 3.6, x0
= 0.2 and epsilon = 107!°. The gnuplot command set logscale 7,
puts the y axis in a logarithmic scale. Therefore an exponential function

178 CHAPTER 3. LOGISTIC MAP

is shown as a straight line and this is what we see in figure 8.7: The
points |Az,|/e tend to lie on a straight line as ¢ decreases. The slopes of
these lines are equal to the Liapunov exponent A. Deviations from the
straight line behavior indicates corrections and systematic errors, as we
point out in figure @ A different initial condition results in a slightly
different value of)\, and the true value can be estimated as the average
over several such choices. We estimate the error of our computation
from the standard error of the mean. The reader should perform such a
computation as an exercise.

One can perform a fit of the points |Ax,|/e to the exponential function
in the following way: Since |Az,|/e ~ Cexp(An) = In(|Az,|/€) = I +c,
we can make a fit to a straight line instead. Using gnuplot, the relevant
commands are:

gnuplot> fit [5:53] a*x+b \
”<Cecho 500 3.6 0.2 1e—15 |./1;cat lia.dat”\
using 1:(log($4)) via a,b

gnuplot> replot exp(a*x+b)

The command shown above fits the data to the function a*x+b by taking
the 1st column and the logarithm of the 4th column (using 1: (log($4)))
of the stdout of the command that we used for creating the previous plot.
We choose data for which 5 < n < 53 ([5:53]) and the fitting parameters
are a,b (via a,b). The second line, adds the fitted function to the plot.

Now we are going to use equation (3.35) for calculating X. This
equation is approximately correct when (a) we have already reached the
steady state and (b) in the large n limit. For this reason we should
study if we obtain a satisfactory convergence when we (a) “throw away”
a number of NTRANS steps, (b) calculate the sum (B.35) for increasing
NSTEPS= 7 (c) calculate the sum (8.35)) for many values of the initial point
xo. This has to be carefully repeated for all values of r since each factor
will contribute differently to the quality of the convergence: In regions
that manifest chaotic behavior (large \) convergence will be slower. The
program can be found in the file 1iapunov2. cpp:

/]
// Discrete Logistic Map:
// Liapunov exponent from sum_i Inlf’(x_i)l

3.6. LIAPUNOV EXPONENTS

0.48 T T T T T T
0.46 i
2 044 - |
‘-l_é ““‘; B S —
o 0.42 | i
c I
<
=z X
z 04F} 1
4
N
S 38| 1
= r=3.8x5=0.20
r=3.8x,=0.35
0.36 r=3.8 xp=0.50 i
r=3.8 x,=0.75
r=3.8 XO=0'90
034 L L 1 ! .

0 10000 20000 30000 40000 50000 60000 70000

Figure 3.8: Plot of the sum (1/n)
map with » = 3.8, N = 2000 for different initial conditions z¢ = 0.20, 0.35, 0.50, 0.75, 0.90.
The different curves converge in the limit n — oo to A = 0.4325(10).

// NTRANS: number of

/] transient

discarted
behaviour

N+n—1
k=N

n

iterations in order to discart

// NSTEPS: number of terms in the sum

/1

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main(){

int NTRANS ,NSTEPS ,1i;
double r,x0,x1,sum;

string buf;
/| —— Input:

cout << 7# Enter NTRANS,NSTEPS,

cin >> NTRANS >> NSTEPS >> r

r,

>>

x0:\n”;
x0; getline(cin,buf);

179

In|f'(z)| as a function of n for the logistic

180 CHAPTER 3. LOGISTIC MAP

cout < 7"# NTRANS = 7 << NTRANS << endl;
cout <L 7# NSTEPS = 7 << NSTEPS << endl;
cout <K "# r =" Kr << endl;
cout < 7# x0 =7 K x0 << endl;
for (i=1;i<=NTRANS;i++){

x1 =r * x0 * (1.0 — x0);

x0 = x1;
1
sum = log(abs(r*(1.0 — 2.0*x0)));
/] —— Initialize :

ofstream myfile(”lia.dat”);
myfile.precision(17);
/| ——— Calculate:
myfile <1 <KLL77LKx0 K77 sum KL TAnTy
for(i=2;i<=NSTEPS;i++){
x1 =r * x0 * (1.0—-x0);
sum += log(abs(r*(1.0-2.0%*x1)));
myfile << i K77 KLx K77 LKL sum/i KL Y\nT
x0 = x1;
}
myfile.close();
} // main ()

After NTRANS steps, the program calculates NSTEPS times the sum of the
terms In |f'(x)| = In|r(1 — 2x;)|. At each step the sum divided by the
number of steps i is printed to the file 1ia.dat. Figure 8.6 shows the
results for » = 3.8. This is a point where the system exhibits strong
chaotic behavior and convergence is achieved after we compute a large
number of steps. Using NTRANS = 2000 and NSTEPS ~ 70 000 the achieved
accuracy is about 0.2% with A = 0.4325 + 0.0010 = 0.4325(10). The main
contribution to the error comes from the different paths followed by
each initial point chosen. The plot can be constructed with the gnuplot
commands:

> g++ liapunov2.cpp —o 1
> gnuplot
gnuplot> plot \

”<echo 2000 70000 3.8 0.20 |./1l;cat lia.dat” u 1:3 w 1,\
”<echo 2000 70000 3.8 0.35 |./l;cat lia.dat” u 1:3 w 1,\
”<echo 2000 70000 3.8 0.50 I|./1;cat lia.dat” u 1:3 w 1,\
”<Cecho 2000 70000 3.8 0.75 [./1l;cat lia.dat” u 1:3 w 1,\
”Cecho 2000 70000 3.8 0.90 |./1;cat lia.dat” u 1:3 w 1

3.6. LIAPUNOV EXPONENTS 181

The plot command runs the program using the parameters NTRANS =
2000, NSTEPS = 70000, r = 3.8 and x0 = 0.20,0.35,0.50,0.75,0.90 and
plots the results from the contents of the file 1ia.dat.

In order to determine the regions of chaotic behavior we have to study
the dependence of the Liapunov exponent A on the value of r. Using our
experience coming from the careful computation of A\ before, we will run
the program for several values of r using the parameters NTRANS = 2 000,
NSTEPS = 60000 from the initial point x0 = 0.2. This calculation gives
accuracy of the order of 1%. If we wish to measure A carefully and
estimate the error of the results, we have to follow the steps described in
figures 8.7 and B.8. The program can be found in the file 1iapunov3. cpp
and it is a simple modification of the previous program so that it can
perform the calculation for many values of 7.

/]
// Discrete Logistic Map:

// Liapunov exponent from sum_i Inlf’ (x_i) |

// Calculation for r in [rmin,rmax] with RSTEPS steps

// RSTEPS: values or r studied: r=rmin+(rmax—rmin)/RSTEPS

// NTRANS: number of discarted iterations in order to discart
/] transient behaviour

// NSTEPS: number of terms in the sum

// xstart: value of initial x0 for every r

//
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main(){

const double rmin = 2.5;
const double rmax = 4.0;
const double xstart = 0.2;
const int RSTEPS = 1000;
const int NSTEPS = 60000;
const int NTRANS = 2000;
int i,ir;

double r,x0,x1,sum,dr;

182 CHAPTER 3. LOGISTIC MAP

string buf;

/[————— Initialize:
ofstream myfile(”lia.dat”);
myfile.precision(17);

/] — Calculate:
dr = (rmax—rmin) /(RSTEPS—1);
for(ir = 0; ir < RSTEPS;ir++){
r = rmin+ir*dr;
x0 = xstart;
for(i = 1; i <= NTRANS; i++){
x1 =1 * x0 * (1.0—-x0);
x0 = x1;
}
sum = log(abs(r*(1.0-2.0%*x0)));

// Calculate :
for(i = 2; i <= NSTEPS; i++)]{
x1 =1 * x0 * (1.0—x0);

sum+= log(abs(r*(1.0-2.0%x1)));
x0 = x1;
}
myfile << r < 7 7 << sum/NSTEPS << ’\n’;

}//for (ir=0;ir <RSTEPS; ir ++)
myfile.close();
} //main ()

The program can be compiled and run using the commands:

> g++ liapunov3.cpp —o 1
> /1 &

The character & makes the program ./1 to run in the background. This
is recommended for programs that run for a long time, so that the shell
returns the prompt to the user and the program continues to run even
after the shell is terminated.

The data are saved in the file lia.dat and we can make the plot
shown in figure B.7 using gnuplot:

gnuplot> plot 7lia.dat” with lines notitle ,0 notitle

Now we can compare figure 8.9 with the bifurcation diagram shown in
figure B.4. The intervals with A < 0 correspond to stable k-cycles. The

3.6. LIAPUNOV EXPONENTS 183

0.2 | Y\ |

Figure 3.9: The Liapunov exponent A of the logistic map calculated via equation
(). Note the chaotic behavior that manifests for the values of » where A > 0 and
the windows of stable k-cycles where A < 0. Compare this plot with the bifurcation
diagram of figure B.4. At the points where A = 0 we have onset of chaos (or “edge of
chaos”) with manifestation of weak chaos (i.e. |Ax,| ~ |Azo|n¥). At these points we
have transitions from stable k-cycles to strong chaos. We observe the onset of chaos for
the first time when r = r, ~ 3.5699, at which point A = 0 (for smaller r the plot seems
to touch the A\ = 0 line, but in fact A takes negative values with |A| very small).

intervals where A > 0 correspond to manifestation of strong chaos. These
intervals are separated by points with A = 0 where the system exhibits
weak chaos. This means that neighboring trajectories diverge from each
other with a power law |Az,| ~ |Azy|n“ instead of an exponential, where
w = 1/(1 — q) is a positive exponent that needs to be determined. The
parameter ¢ is the one usually used in the literature. Strong chaos is
obtained in the ¢ — 1 limit. For larger r, switching between chaotic and
stable periodic trajectories is observed each time A changes sign. The
critical values of r can be computed with relatively high accuracy by
restricting the calculation to a small enough neighborhood of the critical
point. You can do this using the program listed above by setting the

184 CHAPTER 3. LOGISTIC MAP

parameters rmin and rmax.

5 5
4 4
3 3
g g
o o
2t] 2t
1t] 1t
0 ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 08 1 0 0.2 0.4 06 0.8 1
X X

Figure 3.10: The distribution functions p(z) of z of the logistic map for r = 3.59
(left) and 3.8 (right). The chaotic behavior appears to be weaker for » = 3.59, and this
is reflected on the value of the entropy. One sees that there exist intervals of x with
p(z) = 0 which become smaller and vanish as r gets close to 4. This distribution is very
hard to be distinguished from a truly random distribution.

We can also study the chaotic properties of the trajectories of the
logistic map by computing the distribution p(z) of the values of z in
the interval (0,1). After the transitional period, the distribution p(z)
for the k£ cycles will have support only at the points of the k cycles,
whereas for the chaotic regimes it will have support on subintervals of
(0,1). The distribution function p(x) is independent for most of the initial
points of the trajectories. If one obtains a large number of points from
many trajectories of the logistic map, it will be practically impossible to
understand that these are produced by a deterministic rule. For this
reason, chaotic systems can be used for the production of pseudorandom
numbers, as we will see in chapter [L1. By measuring the entropy, which is
a measure of disorder in a system, we can quantify the “randomness” of
the distribution. As we will see in chapter @, it is given by the equation

S = Zpk Inpg, (3.37)
k

where p;, is the probability of observing the state k. In our case, we can
make an approximate calculation of S by dividing the interval (0,1) to
N subintervals of width Az. For given r we obtain a large number M
of values x, of the logistic map and we compute the histogram h;, of

3.6. LIAPUNOV EXPONENTS 185

their distribution in the intervals (zj,z); + Az). The probability density
is obtained from the limit of p, = hy/(MAx) as M becomes large and Az
small (large N). Indeed, Y , pyAz = 1 converges to fol p(z)dx =1. We
will define S = — 3", pr InppAx.

p(x)

O L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

X

Figure 3.11: The distribution p(z) of = for the logistic map for r = 4. We observe
strong chaotic behavior, p(z) has support over the whole interval (0,1) and the entropy
is large. The solid line is the analytic form of the distribution p(z) = 7~ 'x=1/2(1—z)~1/2
which is known for r = 4 [B2]. This is the beta distribution for a = 1/2, b= 1/2.

The program listed below calculates p; for chosen values of r, and
then the entropy S is calculated using (B.37). It is a simple modification
of the program in liapunov3.cpp where we add the parameter NHIST
counting the number of intervals N for the histograms. The probability

density is calculated in the array p[NHIST]. The program can be found
in the file entropy. cpp:

//
// Discrete Logistic Map:

// Liapunov exponent from sum_i Inlf’(x_i)l

// Calculation for r in [rmin,rmax]| with RSTEPS steps

// RSTEPS: values or r studied: r=rmin+(rmax—rmin)/RSTEPS

// NTRANS: number of discarted iterations in order to discart
// transient behaviour

186 CHAPTER 3. LOGISTIC MAP

// NSTEPS: number of terms in the sum

// xstart: value of initial x0O for every r
//
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

int main() {

const double rmin = 2.5;
const double rmax = 4.0;
const double xstart = 0.2;
const int RSTEPS = 1000;
const int NHIST = 10000;
const int NTRANS = 2000;
const int NSTEPS = 5000000,
const double xmin=0.0,xmax=1.0;
int i,ir,isum,n;

double r,x0,x1,sum,dr,dx;
double p[NHIST],S;
string buf;

/| ——— Initialize:
ofstream myfile(’entropy.dat”);
myfile.precision(17);
// ————— Calculate:
for (i=0;i<NHIST;i++) p[i] = 0.0;
dr = (rmax—rmin)/(RSTEPS—1);
dx = (xmax—xmin)/(NHIST —1);
for (ir=0;ir<RSTEPS;ir++){
r = rmin+ir*dr;
x0= xstart;
for (i=1;i<=NTRANS;i++){
x1 =1 * x0 * (1.0—-x0);
x0 = x1;
}
//make histogram :
n=int(x0/dx); p[n]+=1.0;
for (i=2;i<=NSTEPS;i++){

x1 =r * x0 * (1.0—-x0);
n = int(x1/dx);
pln] += 1.0;

x0 = x1;

3.6. LIAPUNOV EXPONENTS 187

}

//plk] is now histogram of x—values.

// Normalize so that sum_k p[k]*dx=1

//to get probability distribution:

for(i=0;i < NHIST;i++) p[i] /= (NSTEPS*dx);

//sum all non zero terms: p[n]*log(p[n]) *dx

S = 0.0;

for(i=0;i < NHIST;i++)

if (p[i] > 0.0)
S —= pl[il*log(pl[il) *dx;

myfile < r << 7 7 K 8 K '\n’;
}//for(ir=0;ir <RSTEPS; ir ++)
myfile.close();

myfile.open(”entropy_hist.dat”);
myfile.precision(17);
for (n=0;n<NHIST;n++){
x0 = xmin + n*dx + 0.5*dx;
myfile << r << 7 7 KL x0 K77 KL pln] K "\n7y
}
myfile.close();
} // main ()

For the calculation of the distribution functions and the entropy we
have to choose the parameters which control the systematic error. The
parameter NTRANS should be large enough so that the transitional behav-
ior will not contaminate our results. Our measurements must be checked
for being independent of its value. The same should be done for the ini-
tial point xstart. The parameter NHIST controls the partitioning of the
interval (0,1) and the width Az, so it should be large enough. The pa-
rameter NSTEPS is the number of “measurements” for each value of » and
it should be large enough in order to reduce the “noise” in p;. It is obvi-
ous that NSTEPS should be larger when Az becomes smaller. Appropriate
choices lead to the plots shown in figures and for r = 3.59, 3.58
and 4. We see that stronger chaotic behavior means a wider distribution
of the values of z.

The entropy is shown in figure 8.12. The stable periodic trajectories
lead to small entropy, whereas the chaotic ones lead to large entropy.
There is a sudden increase in the value of the entropy at the beginning
of chaos at r = r., which increases even further as the chaotic behavior
becomes stronger. During the intermissions of the chaotic behavior there
are sudden drops in the value of the entropy. It is quite instructive to

188 CHAPTER 3. LOGISTIC MAP

_9 I 1 1 1
3.5 355 36 365 3.7 3.75 3.8 3.8 39 395 4

r

Figure 3.12: The entropy S = — 3, px Inpy, Az for the logistic map as a function
of r. The vertical line is r. ~ 3.56994567 which marks the beginning of chaos and the
horizontal is the corresponding entropy. The entropy is low for small values of r, where
we have the stable 2" cycles, and large in the chaotic regimes. S drops suddenly when
we pass to a (temporary) periodic behavior interval. We clearly observe the 3-cycle for
r =1++/8 ~ 3.8284 and the subsequent bifurcations that we observed in the bifurcation
diagram (figure B.4) and the Liapunov exponent diagram (figure [B.9).

compare the entropy diagrams with the corresponding bifurcation dia-
rams (see figure B.4) and the Liapunov exponent diagrams (see figure
). The entropy is increasing until r reaches its maximum value 4, but
this is not done smoothly. By magnifying the corresponding areas in the
plot, we can see an infinite number of sudden drops in the entropy in
intervals of r that become more and more narrow.

3.7. PROBLEMS 189

3.7 Problems

Several of the programs that you need to write for solving the problems of
this chapter can be found in the Problems directory of the accompanying
software of this chapter.

3.1 Confirm that the trajectories of the logistic map for » < 1 are falling
off exponentially for large enough n.

(a)

(b)

()

Choose r = 0.5 and plot the trajectories for zo = 0.1 — 0.9 with
step 0.1 for n = 1,...,1000. Put the y axis in a logarithmic
scale. From the resulting curves discuss whether you obtain
an exponential falloff.

Fit the points x,, for n > 20 to the function ce ™ and deter-
mine the fitting parameters a and c¢. How do these parameters
depend on the initial point z;,? You can use the following
gnuplot commands for your calculation:

gnuplot> !g++ logistic.cpp —o 1

gnuplot> a=0.7;c=0.4;

gnuplot> fit [10:] c*exp(—a*x) \

”’Cecho 1000 0.5 0.51./1;cat log.dat” via a,c
gnuplot> plot c*exp(—a*x),\

”’<Cecho 1000 0.5 0.5!./1;cat log.dat” w 1

As you can see, we set NSTEPS = 1000, r = 0.5, x0 = 0.5. By
setting the limits [10:] to the fit command, the fit includes
only the points z,, > 10, therefore avoiding the transitional
period and the deviation from the exponential falloff for small
n.

Repeat for » = 0.3 — 0.9 with step 0.1 and for » = 0.99,0.999.
As you will be approaching » = 1, you will need to discard
more points from near the origin. You might also need to
increase NSTEPS. You should always check graphically whether
the fitted exponential function is a good fit to the points z,, for
large n. Construct a table for the values of a as a function of
T

The solutions of the equation (B.3) is e"~1*. How is this related to
the values that you computed in your table?

190

3.2

3.3

3.4

3.5

3.6

3.7

CHAPTER 3. LOGISTIC MAP

Consider the logistic map for » = 2. Choose NSTEPS=100 and cal-
culate the corresponding trajectories for x0=0.2, 0.3, 0.5, 0.7,
0.9. Plot them on the same graph. Calculate the fixed point x5
and compare your result to the known value 1 — 1/r. Repeat for
x0= 10" for a = —1, -2, —5, —10, —20, —25. What do you conclude
about the point z] = 07

Consider the logistic map for r = 2.9,2.99,2.999. Calculate the stable
point 3 and compare your result to the known value 1 —1/r. How
large should NSTEPS be chosen each time? You may choose x0=0.3.

Consider the logistic map for r = 3.2. Take x0=0.3, 0.5, 0.9 and
NSTEPS=300 and plot the resulting trajectories. Calculate the fixed
points z; and z; by using the command tail log.dat. Increase
NSTEPS and repeat so that you make sure that the trajectory has
converged to the 2-cycle. Compare their values to the ones given
by equation (B.18). Make the following plots:

gnuplot> plot \
”<{echo 300 3.2 0.3I./1;awk 'NR%2==0" log.dat” w 1
gnuplot> replot \
”<echo 300 3.2 0.3l./1;awk ’NR%2==1" log.dat” w 1

What do you observe?

Repeat the previous problem for r = 3.4494. How big should NSTEPS
be chosen so that you obtain z; and z} with an accuracy of 6 sig-
nificant digits?

Repeat the previous problem for » = 3.5 and 3.55. Choose NSTEPS =
1000, x0 = 0.5. Show that the trajectories approach a 4-cycle and
an 8-cycle respectively. Calculate the fixed points z:-z§ and x§-x7.

Plot the functions f(z), f®(x), f®(z), x for given r on the same
graph. Use the commands:

gnuplot> set samples 1000
gnuplot> f(x) = r*x*(1—x)
gnuplot> r=1;plot [0:1] x,£f(x) . £(£(x)) . f(£(£(£(x))))

3.7.

3.8

3.9
3.10

3.11

3.12

3.13

3.14

PROBLEMS 191

The command r=1 sets the value of r. Take r = 2.5, 3, 3.2, 1++/6, 3.5.
Determine the fixed points and the k-cycles from the intersections
of the plots with the diagonal y = .

Construct the cobweb plots of figures and B.4 for r = 2.8,3.3
and 3.5. Repeat by dropping from the plot an increasing number
of initial points, so that in the end only the k-cycles will remain.
Do the same for r = 3.55.

Construct the bifurcation diagrams shown in figure B.4.

Construct the bifurcation diagram of the logistic map for 3.840 < r <
3.851 and for 0.458 < z < 0.523. Compute the first four bifurcation
points with an accuracy of 5 significant digits by magnifying the
appropriate parts of the plots. Take NTRANS=15000.

Construct the bifurcation diagram of the logistic map for 2.9 < r <
3.57. Compute graphically the bifurcation points ri torn =2, 3, 4,
5, 6, 7, 8. Make sure that your results are stable against variations
of the parameters NTRANS, NSTEPS as well as from the choice of
branching point. From the known values of r™ for n = 2,3, and
from the dependence of your results on the choices of NTRANS,
NSTEPS, estimate the accuracy achieved by this graphical method.
Compute the ratios (r — r"™9) /("™ —) and compare your
results to equation (3.20).

Choose the values of p in equation (B.24) so that you obtain only
one energy level. Compute the resulting value of the energy. When
do we have three energy levels?

Consider the polynomial g(z) = 2® — 222 — 11z + 12. Find the roots
obtained by the Newton-Raphson method when you choose z, =
2.35287527, 2.35284172, 2.35283735, 2.352836327, 2.352836323. What
do you conclude concerning the basins of attraction of each root of
the polynomial? Make a plot of the polynomial in a neighborhood
of its roots and try other initial points that will converge to each
one of the roots.

Use the Newton-Raphson method in order to compute the 4-cycle
xf, ..., x5 of the logistic map. Use appropriate areas of the bifur-

192 CHAPTER 3. LOGISTIC MAP

7 n | r
3.0000000000 | 10 | 3.56994317604
3.4494897429 11 | 3.569945137342
3.544090360 12 | 3.5699455573912
3.564407266 13 | 3.569945647353
3.5687594195 14 | 3.5699456666199
3.5696916098 | 15 | 3.5699456707464
3.56989125938 | 16 | 3.56994567163008
3.56993401837 | 17 | 3.5699456718193
r. = 3.56994567 . ..

O 00 3O Oty WN3

Table 3.1: The values of r™ for the logistic map calculated for problem [L7. r =,
is taken from the bibliography.

cation diagram so that you can choose the initial points correctly.
Check that your result for r¥ is the same for all z}. Tune the
parameters chosen in your calculation on order to improve the ac-
curacy of your measurements.

3.15 Repeat the previous problem for the 8-cycle zj, ..., z}; and r®.
3.16 Repeat the previous problem for the 16-cycle zj-, ..., x5, and .
3.17 Calculate the critical points r for n =3,...,17 of the logistic map

using the Newton-Raphson method. In order to achieve that, you
should determine the bifurcation points graphically in the bifurca-
tion diagram first and then choose the initial points in the Newton-
Raphson method appropriately. The program in bifurcationPoints.cpp
should read the parameters eps, epsx, epsr from the stdin so that
they can be tuned for increasing n. If these parameters are too small
the convergence will be unstable and if they are too large you will
have large systematic errors. Using this method, try to reproduce

table [B.1]

3.18 Calculate the ratios Ar(™ /Ar("t1) of equation (8.20) using the re-
sults of table 3.1. Calculate Feigenbaum’s constant and comment
on the accuracy achieved by your calculation.

3.7. PROBLEMS

193

3.19 Estimate Feigenbaum’s constant 0 and the critical value 7. by as-

suming that for large enough n, r{ ~ r.— C6™. This behavior
is a result of equation (8.20). Fit the results of table B.1 to this
function and calculate § and r.. This hypothesis is confirmed in
figure where we can observe the exponential convergence of
r™ to r.. Construct the same plot using the parameters of your
calculation.

Hint: You can use the following gnuplot commands:

nmin=2;nmax=17
r(x)= rc—c*d**(—x)
fit [nmin:nmax] r(x)
plot "rerit”, r(x)
print rc,d

gnuplot>
gnuplot>
gnuplot>
gnuplot>
gnuplot>

“rerit” u 1:2 via rc,c,d

The file rcrit contains the values of table B.1. You should vary the
parameters nmin, nmax and repeat until you obtain a stable fit.

1 :
o

0.01 | R

0.0001

1e-06 E

1le-08 | 1

le-10 E

1e-12 I I I I I I I
2

12

14

16

18

Figure 3.13: Test of the relation r\™ ~ r, — C5~" discussed in problem [[7. The
parameters used in the plot are approximately r. = 3.5699457, § = 4.669196 and C =

12.292.

194 CHAPTER 3. LOGISTIC MAP

3.20 Use the Newton-Raphson method to calculate the first three bifur-
cation points after the appearance of the 3-cycle for r = 1 4 /8.
Choose one bifurcation point of the 3-cycle, one of the 6-cycle and
one of the 12-cycle and magnify the bifurcation diagram in their
neighborhood.

3.21 Consider the map describing the evolution of a population
Tnir = p(wn) = 2pe” 7). (3.38)

(a) Plot the functions z, p(z), p® (), p¥(z) for r = 1.8,2, 2.6, 2.67,
2.689 for 0 < # < 8. For which values of r do you expect to
obtain stable k-cycles?

(b) For the same values of r plot the trajectories with initial points
xo = 0.2,0.5,0.7. For each r make a separate plot.

(c) Use the Newton-Raphson method in order to determine the
points " for n = 3,4,5 as well as the first two bifurcation
points of the 3-cycle.

(d) Construct the bifurcation diagram for 1.8 < r < 4. Determine
the point marking the onset of chaos as well as the point where

the 3-cycle starts. Magnify the diagram around a branch that
you will choose.

(e) Estimate Feigenbaum’s constant 4 as in problem [I7. Is your
result compatible with the expectation of universality for the
value of 47 Is the value of r. the same as that of the logistic
map?

3.22 Consider the sine map:
Tpt1 = S(x,) = rsin(mx,). (3.39)

(a) Plot the functions z, s(x), s (), s®(z), s®(z) for r = 0.65,
0.75, 0.84, 0.86, 0.88. Which values of r are expected to lead to
stable k-cycles?

(b) For the same values of r, plot the trajectories with initial points
zo = 0.2,0.5,0.7. Make one plot for each r.
(c) Use the Newton-Raphson method in order to determine the

points r£”> for n = 3,4,5 as well as the first two bifurcation
points of the 3-cycle.

3.7. PROBLEMS 195

(d) Construct the bifurcation diagram for 0.6 < r < 1. Within
which limits do the values of x lie in? Repeat for 0.6 < r < 2.
What do you observe? Determine the point marking the onset
of chaos as well as the point where the 3-cycle starts. Magnify
the diagram around a branch that you will choose.

3.23 Consider the map:
Tpyp1 =1 —ra? (3.40)

n -

(a) Construct the bifurcation diagram for 0 < r < 2. Within which
limits do the values of x lie in? Determine the point marking
the onset of chaos as well as the point where the 3-cycle starts.
Magnify the diagram around a branch that you will choose.

(b) Use the Newton-Raphson method in order to determine the

points r((;") for n = 3,4,5 as well as the first two bifurcation
points of the 3-cycle.

3.24 Consider the tent map:

(3.41)

. T 0<zx
:an:rmln{xn,l—gcn}:{ r(f—x) lzx”
n) 3

IAIA
— D=

Construct the bifurcation diagram for 0 < r < 2. Within which lim-
its do the values of z lie in? On the same graph, plot the functions
r/2, r—1?/2.

Magnity the diagram in the area 1.407 < r < 1.416 and 0.580 <
x < 0.588. At which point do the two disconnected intervals within
which z,, take their values merge into one? Magnify the areas 1.0 <
r < 1.1, 04998 < x < 0.5004 and 1.00 < r < 1.03, 0.4999998 < x <
0.5000003 and determine the merging points of two disconnected
intervals within which z,, take their values.

3.25 Consider the Gauss map (or mouse map):
Topr =€ " 4 q. (3.42)

Construct the bifurcation diagram for —1 < ¢ < 1 and r = 4.5, 4.9,
7.5. Make your program to take as the initial point of the new
trajectory to be the last one of the previous trajectory and choose

196

3.26

3.27

3.28

3.29

3.30

3.31

CHAPTER 3. LOGISTIC MAP

zg = 0 for ¢ = —1. Repeat for o = 0.7,0.5,—-0.7. What do you
observe? Note that as ¢ is increased, we obtain bifurcations and
“anti-bifurcations”.

Consider the circle map:
Tpi1 = [T, + 7 — gsin(27z,)] mod 1. (3.43)

(Make sure that your program keeps the values of z,, so that 0 <
z, < 1). Construct the bifurcation diagram for 0 < ¢ < 2 and
r=1/3.

Use the program in liapunov.cpp in order to compute the distance
between two trajectories of the logistic map for » = 3.6 that origi-
nally are at a distance Axry = 107, Choose zy, = 0.1, 0.2,0.3, 0.4,
0.5,0.6, 0.7,0.8, 0.9, 0.99,0.999 and calculate the Liapunov exponent
by fitting to a straight line appropriately. Compute the mean value
and the standard error of the mean.

Calculate the Liapunov exponent for r» = 3.58, 3.60, 3.65, 3.70, 3.80
for the logistic map. Use both ways mentioned in the text. Choose
at least 5 different initial points and calculate the mean and the
standard error of the mean of your results. Compare the values of
A that you obtain with each method and comment.

Compute the critical value r. numerically as the limit lim r for

n—o0

the logistic map with an accuracy of nine significant digits. Use the
calculation of the Liapunov exponent) given by equation (B.35).

Compute the values of r of the logistic map numerically for which
we (a) enter a stable 3-cycle (b) reenter into the chaotic behavior.
Do the calculation by computing the Liapunov exponent A\ and
compare your results with the ones obtained from the bifurcation
diagram.

Calculate the Liapunov exponent using equation (8.35) for the fol-

3.7.

3.32

PROBLEMS 197

lowing maps:

Tpyil = z,e) 18<r<i4
Tpp1 = rsin(mx,), 06<r<l1
Tpy1 = 1—7“:1;721, O<r<?2
Tpt1 = e " 4 q, r=75-1<qg<1
1
Tpp1 = |z, + 3 gsin(2rx,)| mod 1, 0<q<2,(3.44)

and construct the diagrams similar to the ones in figure 8.9. Com-
pare your plots with the respective bifurcation diagrams (you may
put both graphs on the same plot). Use two different initial points
zg = 0,0.2 for the Gauss map (z,,11 = e " 4+ ¢) and observe the dif-
ferences. For the circle map (z, 1 = [z, +1/3—¢sin(27z,)] mod 1)
study carefully the values 0 < ¢ < 0.15.

Reproduce the plots in figures [.10, and B.19. Compute the

function p(z) for » = 3.68, 3.80, 3.93 and 3.98. Determine the
points where you have stronger chaos by observing p(z) and the
corresponding values of the entropy. Compute the entropy for
r € (3.95,4.00) by taking RSTEPS=2000 and estimate the values of r
where we enter to and exit from chaos. Compare your results with
the computation of the Liapunov exponent.

3.33 Consider the Hénon map:

2
Tpt1 = Yn+1—ax;,

(a) Construct the two bifurcation diagrams for x, and y, for b =
0.3, 1.0 < a < 1.5. Check if the values a = 1.01, 1.4 that we will
use below correspond to stable periodic trajectories or chaotic
behavior.

(b) Write a program in a file attractor.cpp which will take NINIT
= NL x NL initial conditions (zo(i),yo(i)) ¢ = 1,... .NL on a
NLxNL lattice of the square z,, < zo < Zp, Ym < Yo < Yum.

Each of the points (z¢(7), yo(7)) will evolve according to equa-
tion (B.45) for n = NSTEPS steps. The program will print the

198 CHAPTER 3. LOGISTIC MAP

points (z,(i),y,()) to the stdout. Choose z,, = y,, = 0.6,
Ty = Y = 08, NL= 200.

(¢) Choose a = 1.01, b = 0.3 and plot the points (x,(i),y,(i)) for
n =20, 1, 2, 3, 10, 20, 30, 40, 60, 1000 on the same diagram.

(d) Choose a = 1.4, b = 0.3 and plot the points (z,(i),y,(7)) for
n =0,...,7 on the same diagram.

(e) Choose a = 1.4, b = 0.3 and plot the points (z,(i),y,(i)) for
n = 999 on the same diagram. Observe the Hénon strange
attractor and its fractal properties. It is characterized by a
Hausdorfif] dimension dy = 1.261 & 0.003. Then magnify the

regions
{(z,y)] —1.290 <z < —1.270, 0.378 <y < 0.384},
{(z,y)] 1.150 <z < —1.130, 0.366 <y < 0.372},
{(z,y)] 0108 <z <0.114, 0.238 <y < 0.241},
{(z,y)] 0.300 <z <0.320, 0.204 <y < 0.213},
{(z,y)] 1.076 <z < 1.084, 0.090 <y < 0.096},
{(z,y)] 1216 <z <1.226, 0.032 <y <0.034}.

3.34 Consider the Duffing map:

Tpny1 = Un
Yns1 = —br,+ay, —1>. (3.46)

(a) Construct the two bifurcation diagrams for x,, and y, for b =
0.3, 0 < a < 2.78. Choose four different initial conditions
(z0,0) = (£1/v/2,4+1/y/2). What do you observe?

(b) Use the program attractor.cpp from problem 33 in order to
study the attractor of the map for b = 0.3, a = 2.75.

3.35 Consider the Tinkerbell map:

Tpy1 = 1'721 - yi + azy, + byn
Ynil = 2XpYn + CTy + dy, . (3.47)

“D.A. Russel,].D. Hanson, and E. Ott, “Dimension of strange attractors”, Phys. Rew.
Lett. 45 (1980) 1175. See “Hausdorff dimension” in Wikipedia.

3.7. PROBLEMS 199

(a) Choose a =0.9, b= —0.6013, ¢ = 2.0, d = 0.50. Plot a trajectory
on the plane by plotting the points (z,,y,) for n = 0,...,10000
with (z,50) = (—0.72, —0.64).

(b) Use the program attractor.cpp from problem B3 in order to
study the attractor of the map for the values of the parameters
a, b, ¢, d given above. Choose z,, = —0.68,) = —0.76, v, =
—0.60, ypr = —0.68, n = 10000.

(c) Repeat the previous question by taking d = 0.27.

200 CHAPTER 3. LOGISTIC MAP

Chapter 4

Motion of a Particle

In this chapter we will study the numerical solution of classical equations
of motion of one dimensional mechanical systems, e.g. a point particle
moving on the line, the simple pendulum etc. We will make an introduc-
tion to the numerical integration of ordinary differential equations with
initial conditions and in particular to the Euler and Runge-Kutta meth-
ods. We study in detail the examples of the damped harmonic oscillator
and of the damped pendulum under the influence of an external peri-
odic force. The latter system is nonlinear and exhibits interesting chaotic
behavior.

4.1 Numerical Integration of Newton’s Equa-
tions
Consider the problem of the solution of the dynamical equations of mo-

tion of one particle under the influence of a dynamical field given by
Newton’s law. The equations can be written in the form

REH
_dtf = a(t, 7, 7), (4.1)
where o
F dr
a(t,z,v) = — U= —. 4.2
a(t, z,v) — U= (4.2)

From the numerical analysis point of view, the problems that we will dis-
cuss are initial value problems for ordinary differential equations where

201

202 CHAPTER 4. MOTION OF A PARTICLE

the initial conditions
f(to) = 11_3”0 ’(7(to) - _"07 (43)

determine a unique solution #(¢). The equations (6.1) are of second order
with respect to time and it is convenient to write them as a system of
twice as many first order equations:

azx dv

=7

Y a7, 7). 44
dt 5~ AbE) (4.4)

In particular, we will be interested in the study of the motion of a particle
moving on a line (1 dimension), therefore the above equations become

le—j = % = a(t,z,v) 1-dimension
.Z‘(t()) = T U(to) =7 . (45)

When the particle moves on the plane (2 dimensions) the equations of
motion become

dx dv, . .
it = a,(t,x, vy, y,v,) 2-dimensions
dy dv
gl d_ty = a,(t, x, vy, y,0y)
z(to) = o vz (to) = Vou
y(to) = o vy(to) = voy (4.6)

4.2 Prelude: Euler Methods

As a first attempt to tackle the problem, we will study a simple pendulum
of length [in a homogeneous gravitational field g (figure .1). The
equations of motion are given by the differential equations

d*0 g .
ﬁ = —7511'19
-, %.7)

dt

4.2. PRELUDE: EULER METHODS 203

g

Figure 4.1: A simple pendulum of length [in a homogeneous gravitational field g.

which can be rewritten as a first order system of differential equations

o
a -

dw g .

E = —751n9 s (48)

The equations above need to be written in a discrete form appropriate
for a numerical solution with the aid of a computer. We split the interval
of time of integration [t;,t;] to N — 1 equal intervals] of width At = h,
where h = (t; — t;)/(IN — 1). The derivatives are approximated by the
relations (z,41 — x,)/At = 2/, so that

Wil = Wp+ oAt
Opt1 = O+ w,AL. (4.9)
where o = —(g/l)sinf is the angular acceleration. This is the so-called

Euler method. The error at each step is estimated to be of order (At)?.
This is most easily seen by Taylor expanding around the point ¢,, and
neglecting all terms starting from the second derivative and beyond}.

'We have N discrete time points t; = t1,...,tn_1,tn = tf
*See appendix .7 for retails.

204 CHAPTER 4. MOTION OF A PARTICLE

0.5

04 ‘ g

02| yaN ‘ 4

0.1 /

\ |
03| \) R

0.4 I ! ! ! ! \\/ !

Figure 4.2: Convergence of Euler’s method for a simple pendulum with period
T ~ 1.987(w? = 10.0) for several values of the time step At which is determined by the
number of integration steps Nt= 50—100, 000. The solution is given for 6y = 0.2, wy = 0.0
and we compare it with the known solution for small angles with a(t) ~ —(g/I) 6.

What we are mostly interested in is in the fotal error of the estimate of the
functions we integrate for at time ¢;! We expect that errors accumulate in
an additive way at each integration step, and since the number of steps is
N o 1/At the total error should be o (At)? x (1/At) = At. This is indeed
what happens, and we say that Euler’s method is a first order method.
Its range of applicability is limited and we only study it for academic
reasons. Euler’s method is asymmetric because it uses information only
from the beginning of the integration interval (¢,t + At). It can be put
in a more balanced form by using the velocity at the end of the interval
(t,t + At). This way we obtain the Euler-Cromer method with a slightly
improved behavior, but which is still of first order

Wil = Wp+ oAt
0n+1 = (9n + wn+1At . (4.10)

An improved algorithm is the Euler—Verlet method which is of second

4.2. PRELUDE: EULER METHODS 205

0.025

0.02 |
0.015 |
0.01

0.005

-0.005
-0.01

-0.015

-0.02

-0.025 ! ! ! ! ! !
0

Figure 4.3: Convergence of the Euler-Cromer method, similarly to figure b9 We
observe a faster convergence compared to Euler’s method.

order and gives total errorf] ~ (At)2. This is given by the equations

0n+1 = QQn — en—l + an(At)2

9n+1 - enfl
" 2At
The price that we have to pay is that we have to use a two step
relation in order to advance the solution to the next step. This implies
that we have to carefully determine the initial conditions of the problem
which are given only at one given time ¢;. We make one Euler time step

backwards in order to define the value of ,. If the initial conditions are
6y = 0(t;), w1 = w(t;), then we define

1
90 = 91 — wlAt + 50(1(At)2 . (412)

It is important that at this step the error introduced is not larger than
O(At?), otherwise it will spoil and eventually dominate the O(At?) total
error of the method introduced by the intermediate steps. At the last

*See appendix .7 for details.

206 CHAPTER 4. MOTION OF A PARTICLE

0.025
002 [o oo oo s

Al \ :

0.015 | | /
001 \ /

0.005 - \ |

-0.005 - \
-0.01 - \ I} b
\ J Y

)
- - \ f It
0.015 \\ Ji \ //;‘

-0.02 -

-0.025
0

Figure 4.4: Convergence of the Euler-Verlet method, similarly to figure b9 We
observe a faster convergence than Euler’s method, but the roundoff errors make the
results useless for Nt> 50,000 (note what happens when Nt= 100, 000. Why?).

step we also have to take

Wy = %. (4.13)

Even though the method has smaller total error than the Euler method,
it becomes unstable for small enough At due to roundoff errors. In
particular, the second equation in (4.11) gives the angular velocity as the
ratio of two small numbers. The problem is that the numerator is the
result of the subtraction of two almost equal numbers. For small enough
At, this difference has to be computed from the last digits of the finite
representation of the numbers 0,,; and 6,, in the computer memory. The
accuracy in the determination of (,.; — 6,) decreases until it eventually
becomes exactly zero. For the first equation of (4.11), the term o, At? is
smaller by a factor At compared to the term «, At in Euler’s method.
At some point, by decreasing At, we obtain a,At? <« 26, — 0,_,; and
the accuracy of the method vanishes due to the finite representation of
real number in the memory of the computer. When the numbers «,, At?
and 20,, — 0, differ from each other by more that approximately sixteen

4.2. PRELUDE: EULER METHODS 207

8 T

50 ——
100
1000 -------- 4
10000
15000
18000
20000 -------
100000 -~

210

12 ! ! ! ! ! !

Figure 4.5: Convergence of Euler’s method for the simple pendulum like in figure
for 6y = 3.0, wy = 0.0. The behavior of the angular velocity is shown and we notice
unstable behavior for Nt< 1,000.

orders of magnitude, adding the first one to the second is equivalent to
adding zero and the contribution of the acceleration Vanishegﬁ.

Writing programs that implement the methods discussed so far is
quite simple. We will write a program that compares the results from
all three methods Euler, Euler—-Cromer and Euler—Verlet. The main pro-
gram is mainly a user interface, and the computation is carried out by
three functions euler, euler_ cromer and euler_verlet. The user must
provide the function accel(x) which gives the angular acceleration as a
function of x. The variable x in our problem corresponds to the angle
theta. For starters we take accel(x)= -10.0 * sin(x), the acceleration
of the simple pendulum.

The data structure is very simple: Three double arrays T[P], X[P]
and V[P] store the times ¢, the angles 6,, and the angular velocities w,, for
n = 1,...,Nt. The user determines the time interval for the integration

‘“Numbers of type double have approximately sixteen significant digits. The accuracy
of the operations described above is determined by the number ¢, which is the smallest
positive number such that 1 + ¢ > 1. For variables of type float, ¢ ~ 1.2 x 1077 and
for variables of type double € ~ 2.2 x 10716,

208 CHAPTER 4. MOTION OF A PARTICLE

8 T

50 ——
100
1000 -

6 ™\ 10000 E
7\ 15000
7\ 18000
/ \ 20000 -~~~
4t 7 \ 100000
/ “\
/ \
2r V4 \ 1
4 h
\
\
> 0k —~ .. —

Figure 4.6: Convergence of Euler-Cromer’s method, like in figure k.5. We observe a
faster convergence than for Euler’s method.

from t; = 0 to t; = Tfi and the number of discrete times Nt. The latter
should be less than P, the size of the arrays. She also provides the initial
conditions 6, = Xin and wy = Vin. After this, we call the main integration
functions which take as input the initial conditions, the time interval of
the integration and the number of discrete times Xin,Vin,Tfi,Nt. The
output of the routines is the arrays T,X,V which store the results for the
time, position and velocity respectively. The results are printed to the
files euler.dat, euler cromer.dat and euler verlet.dat.

After setting the initial conditions and computing the time step At =
h = Tfi/(Nt — 1), the integration in each of the functions is performed in
for loops which advance the solution by time At. The results are stored
at each step in the arrays T,X,V. For example, the central part of the
program for Euler’s method is:

T[O] = 0.0;
X[0] = Xin;
V[0] = Vin;
h = Tfi/(Nt—1);

for(i=1;i<Nt;i++){

4.2. PRELUDE: EULER METHODS 209

8 T
50 ——
100
. 1000 -
6 ;- 10000 B
/ 15000
i 18000
/ 20000 -
4t . 100000 - o
i ¥
i %
2 Y Y i
Ry %
i \
_~ TN
> 0 [g B
T - X
N g \\:\
2r \\ \\‘\ T
4 b i
-6 -
8 I I I I I I
0 1 2 3 4 5 6 7

Figure 4.7: Convergence of the Euler-Verlet method, similarly to figure k.5 We
observe a faster convergence compared to Euler’s method but that the roundoff errors
make the results unstable for Nt2 18,000. In this figure, float variables have been
used instead of double in order to enhance the effect.

T[i] = T[i—1]+h;
V[i] V[i—1]+accel(X[i—1])*h;
X[i] X[i—1]+V[i]*h;

}

Some care has to be taken in the case of the Euler—Verlet method where
one has to initialize the first two steps, as well as take special care for the
last step for the velocity:

T[O] = 0.0;

X[0] = Xin;

VO] = Vin;

X0 = X[0] — V[O] * h + accel(X[O0]) * h2 / 2.0;
T[1] = Ing

X[1] = 2.0*X[0] — XoO + accel(X[0]) * h2;

for (i=2;i<Nt;i++){

VINt—1] = (X[Nt—1] — X[Nt—2])/h;

210 CHAPTER 4. MOTION OF A PARTICLE

The full program can be found in the file euler.cpp and is listed below:

/]
//Program to integrate equations of motion for accelerations
//which are functions of x with the method of Euler,
// Euler—Cromer and Euler—Verlet.
//The user sets initial conditions and the functions return
//X[t] and V[t]=dX[t]/dt in arrays
[/T[O..Nt—1] X[O0..Nt—1],V[O..Nt—1]
//'The user provides number of times Nt and the final
//time Tfi. Initial time is assumed to be t_i=0 and the
//integration step h = Tfi/(Nt—1)
// The user programs a real function accel(x) which gives the
// acceleration dV(t)/dt as function of X.
//NOTE: T[0] = O T[Nt—1] = Tfi
/]
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
/]
const int P = 110000;
double T[P], X[P]., V[PI;
/]
void euler (const double& Xin, const double& Vin,
const double& Tfi, const int & Nt);
void euler cromer(const double& Xin, const double& Vin,
const double& Tfi, const int & Nt);
void euler_verlet(const double& Xin, const double& Vin,
const double& Tfi, const int & Nt);
double accel (const double& x);
/]
int main() {
double Xin, Vin, Tfi;
int Nt , i;
string buf;
// The user provides initial conditions X 0,V_0
//final time t_f and Nt:
cout << ”Enter X 0,V.0,t f Nt (t_i=0):\n";
cin >> Xin >> Vin >> Tfi >> Nt; getline(cin,buf);
// This check is necessary in order to avoid
//memory access violations:

4.2. PRELUDE: EULER METHODS 211

if (Nt>=P){cerr << “Error: Nt>=P\n”;exit(1);}
//Xin= X[0], Vin=V[0], T[0]=0 and the routine gives
//evolution in T[1..Nt—1], X[1..Nt—1], V[1..Nt—1]
//which we print in a file
euler(Xin,Vin,Tfi,Nt);
ofstream myfile(”euler.dat”);
myfile.precision(17);
for (i=0;i<Nt;i++)
//Each line in file has time, position, velocity:
myfile << T[i] << 7 7 K X[1] < 7 7 KL V[i] < endl;
myfile.close();//we close the stream to be reused below
//
//We repeat everything for each method
euler cromer (Xin,Vin, Tfi,Nt);
myfile.open(”euler_cromer.dat”);
for (i=0;i<Nt;i++)
myfile << T[i] << 7 7 < X[i] << 7 7 KL V[i] << endl;
myfile.close();
!/l
euler_verlet(Xin,Vin, Tfi,Nt);
myfile.open(”euler_verlet.dat”);
for (i=0;i<Nt ;i++)
myfile << T[i] << 7 7 K X[i] << 7 7 KL V[i] << endl;
myfile.close();
} //main ()
//
// Function which returns the value of acceleration at
// position x used in the integration functions
//euler , euler cromer and euler_verlet
/]
double accel(const double& x){
return —10.0 * sin(x);
}
!/

// Driver routine for integrating equations of motion
//using the Euler method

//Input:

//Xin=X[0], Vin=V[0] — initial condition at t=0,
// Tfi the final time and Nt the number of times
// Output:

//The arrays T[O..Nt—1], X[O0..Nt—1], V[O..Nt—1] which
/] gives x(t_k)=X[k—1], dx/dt(t_k)=V[k—1], t_k=T[k—1] k=1..Nt
//where for k=1 we have the initial condition.

/1

void euler (const double& Xin, const double& Vin,

212 CHAPTER 4. MOTION OF A PARTICLE

const double& Tfi, const int & Nt)|

int i;
double h;
// Initial conditions set here:
T[O0] = 0.0;
X[0] = Xin;
V[O] = Vin;
//h is the time step Dt
h = Tfi/(Nt—1);
for (i=1;i<Nt;i++){
T[i] = T[i—-1]+h; //time advances by Dt=h
X[i] = X[i—1]+V[i—1]*h; //advancement and storage of
V[i] = V[i—1]+accel(X[i—1D*h;//position and velocity
}
}//euler ()
/]

//Driver routine for integrating equations of motion
//using the Euler—Cromer method

// Input:

//Xin=X[0], Vin=V[0] — initial condition at t=0,
// Tfi the final time and Nt the number of times
// Output:

//The arrays T[O..Nt—1], X[0..Nt—1], V[0..Nt—1] which

/] gives x(t_k)=X[k—1], dx/dt(t_k)=V[k—1], t_k=T[k—1] k=1..Nt

//where for k=1 we have the initial condition.

/]

void euler cromer(const double& Xin, const double& Vin,
const double& Tfi, const int & Nt)|

int i;

double h;

//Initial conditions set here:
T[O] = 0.0;

X[0] = Xin;

V[O0] = Vin;

//h is the time step Dt

h = Tfi/(Nt—1);

for(i=1;i<Nt;i++){
T[i] = T[i—1]+h;
V[i] V[i—1]+accel(X[i—1])*h;
X[1i] X[i—1]+V[i]*h; //note difference from Euler

}

}//euler_cromer ()

/1

// Driver routine for integrating equations of motion

4.2. PRELUDE: EULER METHODS 213

//using the Euler—Verlet method

//Input:

//Xin=X[0], Vin=V[0] — initial condition at t=0,
// Tfi the final time and Nt the number of times
// Output:

//The arrays T[O..Nt—1], X[O0..Nt—1], V[O0..Nt—1] which

/] gives x(t_k)=X[k—1], dx/dt(t k)=V[k—1], t k=T[k—1] k=1..Nt

//where for k=1 we have the initial condition

/]

void euler _verlet(const double& Xin, const double& Vin,
const double& Tfi, const int & Nt){

int i;
double h,h2,X0,02h;
// Initial conditions set here:

T[O] = 0.0;

X[0] = Xin;

V[O] = Vin;

h = Tfi/(Nt—1); //time step

h2 = h*h; //time step squared
o2h = 0.5/h; /] h/2

//We have to initialize one more step:
//X0 corresponds to ’X[—-1]’

X0 = X[0] — V[O] * h + accel(X[O0]) * h2 / 2.0;
T[1] = Iag
X[1] = 2.0*X[0] — X0 + accel(X[0]) * h2;

//Now i starts from 2:

for (i=2;i<Nt;i++){
T[i] = T[i—-1] + h;
X[i] 2.0*X[i—1] — X[i—2] + accel(X[i—1])*h2;
V[i—1] o2h * (X[i]l— X[i-2D);

}

//we have one more step for the velocity:

VINt—1] = (X[Nt—1] — X[Nt—2])/h;

}//euler_verlet ()

Compiling the running the program can be done with the commands:

> g++ euler.cpp —o euler

> ./euler

Enter X_0,V_0,t_f Nt (t_i=0):

0.2 0.0 6.0 1000

> Is euler*.dat

euler_cromer.dat euler.dat euler_verlet.dat
> head —n 5 euler.dat

214 CHAPTER 4. MOTION OF A PARTICLE

0 0.20000 O

0.00600 0.20000 —-0.01193
0.01201 0.19992 —-0.02386
0.01801 0.19978 —0.03579
0.02402 0.19957 —0.04771

The last command shows the first 5 lines of the file euler.dat. We see
the data for the time, the position and the velocity stored in 3 columns.
We can graph the results using gnuplot:

gnuplot> plot “euler.dat” using 1:2 with lines
gnuplot> plot “euler.dat” using 1:3 with lines

These commands result in plotting the positions and the velocities as a
function of time respectively. We can add the results of all methods to
the last plot with the commands:

gnuplot> replot “euler_cromer.dat” using 1:3 with lines
gnuplot> replot “euler_verlet.dat” using 1:3 with lines

The results can be seen in figures .24-4.7. Euler’s method is unsta-
ble unless we take a quite small time step. The Euler—-Cromer method
behaves impressively better. The results converge and remain constant
for Nt~ 100,000. The Euler—Verlet method converges much faster, but
roundoff errors kick in soon. This is more obvious in figure [t.7 where
the initial angular position is largeﬁ. For small angles we can compare
with the solution one obtains for the harmonic pendulum (sin(f) =~ 6):

alt) = —50=-0%
O(t) = 0Oycos(2t) + (wo/Q) sin(2t)
w(t) = wycos(Qt) — () sin(Qt) . (4.14)

In figures [4.2-%.4 we observe that the results agree with the above for-
mulas for the values of At where the methods converge. This way we
can check our program for bugs. The plot of the functions above can be

°In this figure, roundoff errors are enhanced by using float variables instead of
double.

4.3. RUNGE-KUTTA METHODS 215

done with the following gnuplot commandsﬁ:

gnuplot> set dummy t

gnuplot> omega2 = 10

gnuplot> XO = 0.2

gnuplot> VO = 0.0

gnuplot> omega = sqrt(omega?2)

gnuplot> x(t) = X0 * cos(omega * t) +(VO/omega)*sin (omega*t)
gnuplot> v(t) = V0 * cos(omega * t) —(omega*X0)*sin (omega*t)

gnuplot> plot x(t), v(t)

The results should not be compared only graphically since subtle differ-
ences can remain unnoticed. It is more desirable to plot the differences of
the theoretical values from the numerically computed ones which can be
done using the commands:

gnuplot> plot “euler.dat” using 1:($2—x($1)) with lines
gnuplot> plot “euler.dat” using 1:($3—v($1)) with lines

The command using 1:($2-x($1)) puts the values found in the first
column on the z axis and the value found in the second column minus
the value of the function x(t) for ¢ equal to the value found in the first
column on the y axis. This way, we can make the plots shown inf| figures

ht1414,

4.3 Runge-Kutta Methods

Euler’s method is a one step finite difference method of first order. First
order means that the total error introduced by the discretization of the
integration interval [t;,t;] by N discrete times is of order ~ O(h), where
h = At = (t;—t;)/N is the time step of the integration. In this section we
will discuss a generalization of this approach where the total error will
be of higher order in h. This is the class of Runge-Kutta methods which
are one step algorithms where the total discretization error is of order
~ O(hP). The local error introduced at each step is of order ~ O(h?*!)

*The command set dummy t sets the independent variable for functions to be t
instead of x which is the default.
’A small modification is necessary in order to plot the absolute value of the differences.

216 CHAPTER 4. MOTION OF A PARTICLE

leading after N = (t; —t;)/At steps to a maximum error of order

ty —t;
~ p+1 N = p+1 f ¢
O(RPH) x N = O(h*) x L=

In such a case we say that we have a Runge-Kutta method of p'* order.
The price one has to pay for the increased accuracy is the evaluation of
the derivatives of the functions in more than one points in the interval
(t,t + At).

Let’s consider for simplicity the problem with only one unknown
function x(¢) which evolves in time according to the differential equation:

~ O(RP) x % =O(h?). (4.15)

dz
— = f(t,x). 4.16
= J(ta) (4.16)
Consider the first order method first. The most naive approach would
X 4
o
tn the1 the2
| | | -

Figure 4.8: The geometry of the step of the Runge-Kutta method of 1°¢ order given

by equation (&.17).

be to take the derivative to be given by the finite difference

d n — dn
d_f ~ % = [t 20) = Tpp1 = T + hf(tn, 20) . (4.17)

4.3. RUNGE-KUTTA METHODS 217

By Taylor expanding, we see that the error at each step is O(h?), therefore
the error after integrating from ¢, — t; is O(h). Indeed,

dx

= (2) +O(h?) = T+ hf(tn, x,)+O(h?) . (4.18)

Tpi1 = 2(t,+h) =x,+h

The geometry of the step is shown in figure .§. We start from point 1 and
by linearly extrapolating in the direction of the derivative k; = f(t,, z,)
we determine the point z,.

x ¢
)

tn+112 tn+1

h/2 h/2

Figure 4.9: The geometry of an integration step of the 2nd order Runge-Kutta method

given by equation (k.19).

We can improve the method above by introducing an intermediate
point 2. This process is depicted in figure k.9. We take the point 2
in the middle of the interval (t,,t,.1) by making a linear extrapolation
from z,, in the direction of the derivative k; = f(t,,z,). Then we use the
slope at point 2 as an estimator of the derivative within this interval, i.e.
ky = f(tny1/2, Tng1y2) = f(tn + h/2, 2, + (h/2)k1). We use k; to linearly

218 CHAPTER 4. MOTION OF A PARTICLE

extrapolate from z,, to z,,+;. Summarizing, we have that

kl = f(tna xn)
h h
ky = f(tn+§,$n+§k1)
Tpn+1 = Tp —+ hkg . (419)

For the procedure described above we have to evaluate f twice at each
step, thereby doubling the computational effort. The error at each step
(.19 becomes ~ O(h?), however, giving a total error of ~ O(h?) ~

O(1/N?). So for given computational time, (.19 is superior to (%.17).

om
ki i @)

t n+1/2 tn+1

h/2 h/2

Figure 4.10: The geometry of an integration step of the Runge-Kutta method of 4th
order given by equation (.20).

We can further improve the accuracy gain by using the Runge—Kutta
method of 4th order. In this case we have 4 evaluations of the derivative
f per step, but the total error becomes now ~ O(h*) and the method is su-
perior to that of (..19fl. The process followed is explained geometrically

*Not always though! Higher order does not necessarily mean higher accuracy, al-
though this is true in the simple cases considered here.

4.3. RUNGE-KUTTA METHODS 219

in figure .10, We use 3 intermediate points for evolving the solution
from z,, to z,,;. Point 2 is determined by linearly extrapolating from z,
to the midpoint of the interval (¢,,t,.1 = t, + h) by using the direction
given by the derivative k; = f(t,,x,), i.e. ©3 =z, + (h/2)k,. We calculate
the derivative ky = f(t, + h/2,x, + (h/2)k,) at the point 2 and we use it
in order to determine point 3, also located at the midpoint of the interval
(tn,tnt1). Then we calculate the derivative ks = f(t, + h/2, z, + (h/2)ks)
at the point 3 and we use it to linearly extrapolate to the end of the in-
terval (¢,,%,11), thereby obtaining point 4, i.e. x4 = z,, + hks. Then we
calculate the derivative ky = f(t,, + h,z, + hk3) at the point 4, and we
use all four derivative kq, k9, k3 and k, as estimators of the derivative of
the function in the interval (¢,,t,.1). If each derivative contributes with
a particular weight in this estimate, the discretization error can become
~ O(h®). Such a choice is

kl = f(tnwrn
h h
ky = f(tn+§>$n+§k1)
h h
ks = f(tn+§,$n+§k2)
k'4 = f(tn + h, Ty + hk’g)
h

We note that the second term of the last equation takes an average of
the four derivatives with weights 1/6, 1/3, 1/3 and 1/6 respectively. A
generic small change in these values will increase the discretization error
to worse than h°.

We remind to the reader the fact that by decreasing h the discretization
errors decrease, but that roundoff errors will start showing up for small
enough h. Therefore, a careful determination of A that minimizes the
total error should be made by studying the dependence of the results as
a function of h.

4.3.1 A Program for the 4th Order Runge—Kutta

Consider the problem of the motion of a particle in one dimension. For
this, we have to integrate a system of two differential equations (%.5)) for

220 CHAPTER 4. MOTION OF A PARTICLE

two unknown functions of time z;(¢) = z(t) and z3(t) = v(t) so that
dl’l

dlIZ‘Q

P fi(t,z1, 29) I fo(t, @1, 22) (4.21)
In this case, equations (6.20) generalize to:

ki = fl(tn>$1,n;$2,n)

kor = foltn, T1m, Tap)
h h h

ko = filth + §,$1,n + 5 ki1, 22, + B} k1)
h h h

koo = foltn + 5 Tin + 5 ki1, o, + 5 ka1)
h h h

kis = fi(tn + 57T + 5 k12, xo 0 + 5 ka2)
h h h

kas = faltn + §>$1,n + 5 k12, xapn + 5 ka2)

k14 = fl(tn + h7 T1in +h klg, Ton + hkzg)
k24 = fQ(tn+h7x1,n+hk13axl,n+hk23)

h
Tinyl = Tip+ g(k?n + 2k1a + 2k13 + k14)

h
Toant1 = Tin+ E(km + 2kog + 2ko3 + kog) . (4.22)

Programming this algorithm is quite simple. The main program is
an interface between the user and the driver routine of the integration.
The user enters the initial and final times ¢; = Ti and t; = Tf and the
number of discrete time points Nt. The initial conditions are z;(t;) = X10,
25(t;) = X20. The main data structure consists of three global double ar-
rays T[P], X1[P], X2[P] which store the times t; = t;,ts,...,tyy =ty and
the corresponding values of the functions z;(#x) and x»(tx), k = 1,...,Nt.
The main program calls the driver routine RK(Ti,Tf,X10,X20,Nt) which
“drives” the heart of the program, the function RKSTEP(t,x1,x2,dt)
which performs one integration step using equations (4.2%). RKSTEP
evolves the functions x1, x2 at time t by one step h = dt. The func-
tion RK stores the calculated values in the arrays T, X1 and X2 at each
step. When RK returns the control to the main program, all the results
are stored in T, X1 and X2, which are subsequently printed in the file
rk.dat. The full program is listed below and can be found in the file
rk.cpp:

4.3. RUNGE-KUTTA METHODS

221

/1

//Program to solve a 2 ODE system using Runge—Kutta Method

// User must supply derivatives
//dx1/dt=f1(t,x1,x2) dx2/dt=f2(t,x1,x2)
//as real functions

//Output is written in file rk.dat

!/
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

/1

const int P = 110000;
double T[P], X1[P], X2[P];
//

double

f1(const double& t , const double& x1,
double

f2(const double& t , const double& x1,
void

RK(const double& Ti , const double& Tf,

const double& X20, const int & Nt);

void

const double& x2);
const double& x2);

const double& X10,

RKSTEP (double& t, double& x1, double& x2,

const double& dt);
/]

int main()|{
double Ti,Tf,X10,X20;
int Nt;
int i,
string buf;

// Input:

cout << “Runge—Kutta Method for 2-ODEs Integration\n”;

cout << ”Enter Nt,Ti,TF,X10,X20:”

<< endl;

cin >> Nt >> Ti >> Tf >> X10 >> X20;getline(cin,buf);

cout << "Nt =7 < Nt <K endl;
cout < "Time: Initial Ti = 7 < Ti

< ” Final Tf =~ <K< Tf <L endl;
cout < 7 X1(Ti)= ” <L X10

KL 7 X2(Ti)= 7 << X20 << endl;

if (Nt >= P){cerr << "Error! Nt >= P\n”;exit(1);}

// Calculate :

222 CHAPTER 4. MOTION OF A PARTICLE

RK(Ti,Tf,X10,X20,Nt);
// Output:
ofstream myfile(”rk.dat”);
myfile.precision(17);
for (i=0;i<Nt ;i++)
myfile << T [i] <K 7 7
KL X[i] <7 7
<KL X2[i] << "\n’;
myfile.close();
} // main ()
//
//The functions f1,f2(t,x1,x2) provided by the user
!/
double
f1(const double& t, const double& x1, const double& x2)/{
return x2;

}
/]
double

f2(const double& t, const double& x1, const double& x2){
return —10.0*x1; //harmonic oscillator

}
//
//RK(Ti, Tf, , X10,X20,Nt) is the driver

//for the Runge—Kutta integration routine RKSTEP
//Input: Initial and final times Ti,Tf

// Initial values at t=Ti X10,X20

/] Number of steps of integration: Nt—1

// Output: values in arrays T[Nt],X1[Nt],X2[Nt] where
//T[0] = Ti X1[0] X10 X2[0] = X20

// X1[k—1] = X1(at t=T(k))
// X2[k—1] = X2(at t=T(k))
//T[Nt—1] = Tf

/1l

void

RK(const double& Ti , const double& Tf, const double& X10,
const double& X20, const int & Nt){
double dt;
double TS,X1S,X2S; //time and X1,X2 at given step
int i;
// Initialize wvariables:

dt = (Tf-Ti) /(Nt—1);
T [0] = Ti;
X1[0] = X10;

X2[0] = X20;

4.3. RUNGE-KUTTA METHODS 223

TS = Ti;
X18 = X10;
X2S = X20;

//Make RK steps: The arguments of RKSTEP are
// replaced with the new ones!
for (i=1;i<Nt;i++){

RKSTEP (TS, X1S,X2S,dt);

T [i] = TS;
X1[i] = X18;
X2[i] = X28;
}
} //RK()

//
//Function RKSTEP(t,x1,x2,dt)

//Runge—Kutta Integration routine of ODE
//dx1/dt=f1(t,x1,x2) dx2/dt=f2(t,x1,x2)

// User must supply derivative functions:

//real function f1(t,x1,x2)

//real function f2(t,x1,x2)

//Given initial point (t,x1,x2) the routine advances it
//by time dt.

//Input : Inital time t and function values x1,x2
//Output: Final time t+dt and function values x1,x2
// Careful!: values of t,x1,x2 are overwritten...

//

void

RKSTEP (double& t, double& x1, double& x2,
const double& dt) {
double k11 ,k12,k13,k14,k21,k22,k23,k24;
double h,h2,h6;

h =dt; //h =dt, integration step
h2 =0.5*h; //h2=h/2
h6 =h/6.0; //h6=h/6

k11=f1(t,x1,x2);

k21=f2(t,x1,x2);

k12=Ff1(t+h2,x1+h2*k11 ,x2+h2*k21);
k22=f2(t+h2,x1+h2%*k11 ,x2+h2*k21);
k13=f1(t+h2,x1+h2*k12,x2+h2%*k22) ;
k23=f2(t+h2,x1+h2*k12 ,x2+h2*k22) ;
k14=f1(t+h ,x1+h *k13,x2+h *k23);
k24=f2(t+h ,x1+h *k13,x2+h *k23);

t =t+h;

224 CHAPTER 4. MOTION OF A PARTICLE

x1 =x1+h6*(k11+2.0*(k12+k13)+k14);
x2 =x2+h6*(k21+2.0*(k22+k23)+k24);

} //RKSTEP ()

4.4 Comparison of the Methods

100

001l — ,,,,,\\/

1e-04 -

X

106 |- : | | Pl g
§ | | | {
1e-08 - g

le-10 ' B

le-12 .
0.1 1 10

t

Figure 4.11: The discrepancy of the numerical results of the Euler method from the
analytic solution for the simple harmonic oscillator. The parameters chosen are w? = 10,
t; =0,t; =6, 2(0) = 0.2, v(0) = 0 and the number of steps is N = 50, 500, 5, 000, 50, 000.
Observe that the error becomes approximately ten times smaller each time according to
the expectation of being of order ~ O(At).

In this section we will check our programs for correctness and ac-
curacy w.r.t. discretization and roundoff errors. The simplest test is to
check the results against a known analytic solution of a simple model.
This will be done for the simple harmonic oscillator. We will change the
functions that compute the acceleration of the particle to give a = —w?z.
We will take w? = 10 (T" = 1.987). Therefore the relevant part of the
program in euler.cpp becomes

4.4. COMPARISON OF THE METHODS 225

0.1

_— \ / \/ \/ Ob
001 } \ \ |V sbooo

0.001 F ¥ 4

1e-04

1e-05 |

(%

1e-06 F | . E
107 | -

1608 | .

1e-09 E

le-10 L
0.1 1 10

t

Figure 4.12: Like in figure for the Euler-Cromer method. The error becomes
approximately ten times smaller each time according to the expectation of being of order
~ O(At).

double accel(const double& x){
return —10.0 * x;

}

and that of the program in rk.cpp becomes

double
f2(const double& t, const double& x1, const double& x2){
return —10.0*x1;

}

The programs are run for a given time interval ¢; = 0 to ¢y = 6 with
the initial conditions zy = 0.2, v9 = 0. The time step At is varied by
varying the number of steps Nt-1. The computed numerical solution is
compared to the well known solution for the simple harmonic oscillator

alr) = —w’r

zp(t) = xgcos(wt) + (vo/w) sin(wt)
vp(t) = wgcos(wt) — (zow) sin(wt), (4.23)

226 CHAPTER 4. MOTION OF A PARTICLE

50 ——
0.01 - —~ // .
T /o

/
le-04 | B

1le-06 |

X

1e08

1e-10 | Lo g

le-12 I ; | i

le-14 L
0.1 1 10

t

Figure 4.13: Like in figure for the Euler-Verlet method. The error becomes
approximately 100 times smaller each time according to the expectation of being of
order ~ O(At?).

We study the deviation dz(t) = |x(t) — x,(t)| and dv(t) = |v(t) — vx(t)] as a
function of the time step At. The results are shown in figures . 11-}4.14.
We note that for the Euler method and the Euler—Cromer method, the
errors are of order O(At) as expected. However, the latter has smaller
errors compared to the first one. For the Euler—Verlet method, the error
turns out to be of order O(At?) whereas for the 4th order Runge-Kutta
is of orderf] O(At?).

Another way for checking the numerical results is by looking at a
conserved quantity, like the energy, momentum or angular momentum,
and study its deviation from its original value. In our case we study the

mechanical energy

1 1
E = §mv2 + émw%? (4.24)

which is computed at each step. The deviation E = |E — Ej| is shown
in fgures

*The reader should confirm these claims, initially by looking at the figures . 11-%.14
and then by reproducing these results. A particular time ¢ can be chosen and the errors
can be plotted against At, At*> and At* respectively.

4.5. THE FORCED DAMPED OSCILLATOR 227

0.01

le-04

1le-06 - — 1

1e-08 B

1le-10 B

(%

le-12

le-14

le-16

le-18
. 1 10

Figure 4.14: Like in figure for the 4th order Runge—-Kutta method. The error
becomes approximately 10~* times smaller each time according to the expectation of
being of order ~ O(At?). The roundoff errors become apparent for 50,000 steps.

4.5 The Forced Damped Oscillator

In this section we will study a simple harmonic oscillator subject to a
damping force proportional to its velocity and an external periodic driving
force, which for simplicity will be taken to have a sinusoidal dependence
in time,
d*z dz
iz

where F(t) = mapsinwt and w is the angular frequency of the driving
force.

Consider initially the system without the influence of the driving force,
i.e. with ag = 0. The real solutions of the differential equationf] which
are finite for ¢ — +o00 are given by

+ wir = agsinwt (4.25)

zo(t) = ce” OV VA2 4 oy (VA AR)/2 v —4dwi >0, (4.26)

—Qt

““These are easily obtained by substituting the ansatz z(t) = Ae and solving for

Q.

228 CHAPTER 4. MOTION OF A PARTICLE

1000

50 ——

5000 -
100 | 50000 E

10 | S

OE

01
0.01 |
0.001

le-04

1le-05

!
0.1 1 10

Figure 4.15: Like in figure for the case of mechanical energy for the Euler
method.

To(t) = cre™ 2 4 e 2t 42— 4wl =0, (4.27)

zo(t) = e %cos <\/ -2 + 4w t/2>
+coe " sin (y/—yQ + 4w t/2) ;o —4dwd < 0(4.28)

In the last case, the solution oscillates with an amplitude decreasing ex-
ponentially with time.

In the ay > 0 case, the general solution is obtained from the sum
of a special solution z4(t) and the solution of the homogeneous equation
zo(t). A special solution can be obtained from the ansatz x,(t) = A sinwt+
Bcoswt, which when substituted in (.25) and solved for A and B we
find that
ap [(w3 — w?) cos wt + yw sin wt]

4.29
(W — w?)? + w?y? ’ ()

and
z(t) = zo(t) + 24(t) . (4.30)

4.5. THE FORCED DAMPED OSCILLATOR 229

0.1

0.01
0.001 |

le-04 |

1e-05 |

OE

1le-06

1e-07 F ! | L 4

1e-08 | I I |]

1e-09 E

le-10 L
0.1 1 10

Figure 4.16: Like in figure for the case of mechanical energy for the Euler—
Cromer method.

The solution z((t) decreases exponentially with time and eventually only
zs(t) remains. The only case where this is not true, is when we have
resonance without damping for w = wj, 7 = 0. In that case the solution
is

z(t) = ¢1 coswt + cp sinwt + 4@_02 (coswt + 2(wt) sinwt) . (4.31)
W

The first two terms are the same as that of the simple harmonic oscillator.
The last one increases the amplitude linearly with time, which is a result
of the influx of energy from the external force to the oscillator.

Our program will be a simple modification of the program in rk. cpp.
The main routines RK(TO,TF,X10,X20,Nt) and RKSTEP(t,x1,x2,dt) re-
main as they are. We only change the user interface. The basic param-
eters wy, w, 7, ap are entered interactively by the user from the standard
input stdin. These parameters should be accessible also by the function
f2(t,x1,x2) and they are declared within the global scope. Another
point that needs our attention is the function f2(t,x1,x2) which now
takes the velocity v — x2 in its arguments:

230 CHAPTER 4. MOTION OF A PARTICLE

le-04 |

1le-06 -

OE

1le-08 |-

1e-10 - [; i

H 1 }
le-12 | i | | i
: |

le-14 |- } g

1e-16 1
0.1 1 10

Figure 4.17: Like in figure for the case of mechanical energy for the Euler—Verlet
method.

double

f2(const double& t, const double& x1, const double& x2)/{
double a;
a = a_0*cos(omega*t);
return —omega_02*xl—gam*x2+a;

}

The main program, found in the file dlo.cpp, is listed below. The func-
tions RK, RKSTEP are the same as in rk.cpp and should also be included
in the same file.

/]
//Program to solve Damped Linear Oscillator
//using 4th order Runge—Kutta Method

// Output is written in file dlo.dat

/]
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

4.5. THE FORCED DAMPED OSCILLATOR 231

0.01

1e-04 | S
1le-06 b

1e-08 B

OE

1e-10 | o E

le-12 B

le-14

le-16

10
t

Figure 4.18: Like in figure for the case of mechanical energy for the 4th order
Runge-Kutta method. Roundoff errors appear for large enough number of steps.

/1l
const int P = 110000;
double T[P], X1[P], X2[P];
double omega_0,omega,gam,a_0,omega_02,omega?2;
[/
double
f1(const double& t , const double& x1, const double& x2);
double
f2(const double& t , const double& x1, const double& x2);
void
RK(const double& Ti , const double& Tf, const double& X10,

const double& X20, const int & Nt);
void
RKSTEP (double& t, double& x1, double& x2,

const double& dt);

//
int main(){
double Ti,Tf,X10,X20;
double Energy;
int Nt ;
int i;
string buf;

232 CHAPTER 4. MOTION OF A PARTICLE

//Input:

cout <K "Runge—Kutta Method for DLO Integration\n”;
cout << 7Enter omega 0, omega, gamma, a_0:\n”;

cin >> omega_0>> omega>> gam>> a_0;getline(cin,buf);

omega_02 = omega_O*omega_0;
omega?2 = omega *omega;
cout << “omega 0= 7 << omega_0

< 7 omega= 7 << omega << endl;
cout << “gamma= 7 KL gamma

KL 7 a 0= 7 <KL a_0 << endl;
cout << "Enter Nt,Ti,TF,X10,X20:” << endl;
cin >> Nt >> Ti >> Tf >> X10 >> X20;getline(cin,buf);
cout << "Nt =7 < Nt <K endl;
cout < "Time: Initial Ti = ” < Ti

< ” Final Tf =7~ K<L Tf <L endl;
cout < 7 X1(Ti)= > <L X10

<KL 7 X2(Ti)= 7 << X20 << endl;

if (Nt >= P){cerr << "Error! Nt >= P\n”;exit(1);}
// Calculate :
RK(Ti,Tf,X10,X20,Nt);
// Output:
ofstream myfile(”dlo.dat”);
myfile.precision(17);
myfile <K ”# Damped Linear Oscillator — dlo\n”;
myfile << "# omega 0= 7 << omega_0 << 7 omega= ” << omega
L7 gamma= ~ << gam K7 al=7<KKa0L<«
endl;
for (i=0;i<Nt ;i++){
Energy = 0.5*X2[i]*X2[i]+0.5%*omega_02*X1[i]*X1[i];
myfile << T [i] <K 7 7
KL X1[i] 77
KL X2[i] 77
<L Emnergy << ’'\n’;
1
myfile.close();
} //main ()
/]
// The functions f1,f2(t,x1,x2) provided by the user
//
double
f1(const double& t, const double& x1, const double& x2)|{
return x2;

}
//
double

4.5. THE FORCED DAMPED OSCILLATOR 233

f2(const double& t, const double& x1, const double& x2) |
double a;
a = a_0O*cos(omega*t);
return —omega_02*x1—gam*x2+a;

}

t

Figure 4.19: The position as a function of time for the damped oscillator for several
values of v and wy = 3.145.

The results are shown in figures h.19-%.29. Figure shows the

transition from a damped motion for v > 2w, to an oscillating motion
with damping amplitude for 7 < 2w,;. The exponential decrease of the
amplitude is shown in figure [t.21, whereas the dependence of the period
T from the damping coefficient + is shown in figure .29. Motivated by
equation (4.28), written in the form

P
42 — (%) — 2, (4.32)

we construct the plot in figure .29, The right hand side of the equation
is put on the horizontal axis, whereas the left hand side on the vertical.
Equation (4.32) predicts that both quantities are equal and all measure-
ments should lie on a particular line, the diagonal y = x. The period T’

234 CHAPTER 4. MOTION OF A PARTICLE

15 T T T T T T T

10 B

.15 1 1 1 1 I 1 1 1 1

Figure 4.20: The phase space trajectory for the damped oscillator for several values
of v and wy = 3.145. Note the attractor at (x,v) = (0,0) where all trajectories are
“attracted to” as t — +o0.

can be estimated from the time between two consecutive extrema of x(t)
or two consecutive zeros of the velocity v(t) (see figure [4.19).

Finally it is important to study the trajectory of the system in phase
space. This can be seen] in figure .20, A point in this space is a state of
the system and a trajectory describes the evolution of the system’s states
in time. We see that all such trajectories end up as t — +oo to the point
(0,0), independently of the initial conditions. Such a point is an example
of a system’s attractor.

Next, we add the external force and study the response of the system
to it. The system exhibits a transient behavior that depends on the initial
conditions. For large enough times it approaches a steady state that does
not depend on (almost all of) the initial conditions. This can be seen in
figure . This is easily understood for our system by looking at equa-

""To be precise, phase space is the space of positions-momenta, but in our case the
difference is trivial.

4.5. THE FORCED DAMPED OSCILLATOR 235

10 T T T T T T

Amplitude
~

01} \ 4

Figure 4.21: The amplitude of oscillation for the damped oscillator for several
values of v and wy = 3.145. Note the exponential damping of the amplitude with time.

tions (6.26)—(6.28). We see that the steady state () becomes dominant
when the exponentials have damped away. z,(t) can be written in the
form

z(t) = xo(w)cos(wt + 0(w))
To(w) = il , an d(w :LQ. (4.33)
V= A

2 _
w? — wg

These equations are verified in figure where we study the depen-
dence of the amplitude zo(w) on the angular frequency of the driving
force. Finally we study the trajectory of the system in phase space. As
we can see in figure @, this time the attractor is an ellipse, which is
a one dimensional curve instead of a zero dimensional point. For large
enough times, all trajectories approach their attractor asymptotically.

236 CHAPTER 4. MOTION OF A PARTICLE

10 | —

4 02 - (2 T

V2

Figure 4.22: The period of oscillation of the damped oscillator for several values of
v and wy = 3.145. The axes are chosen so that equation (¢.28) (27/T)? = 4w2 — 42 can
be easily verified. The points in the plot are our measurements whereas the straight
line is the theoretical prediction, the diagonal y = =

4.6 The Forced Damped Pendulum

In this section we will study a non-linear dynamical system which ex-
hibits interesting chaotic behavior. This is a simple model which, despite
its deterministic nature, the prediction of its future behavior becomes in-
tractable after a short period of time. Consider a simple pendulum in a
constant gravitational field whose motion is damped by a force propor-
tional to its velocity and it is under the influence of a vertical, harmonic
external driving force:
2

% +7% +wisin® = —2A coswt sinf . (4.34)
In the equation above, ¢ is the angle of the pendulum with the vertical
axis, vy is the damping coefficient, w? = g/L is the pendulum’s natural
angular frequency, w is the angular frequency of the driving force and

4.6. THE FORCED DAMPED PENDULUM 237

T
Xg=1Vvg=0 ———
Xg=0 vo=1

()

0.8 1 1 1 1 1
0 10 20 30 40 50 60

Figure 4.23: The period of oscillation for the forced damped oscillator for different
initial conditions. We have chosen wy = 3.145, w = 2.0, v = 0.5 and a9 = 1.0. We
note that after the transient behavior the system oscillates harmonically according to
the relation z(t) = xo(w) cos(wt + §).

2A is the amplitude of the external angular acceleration caused by the
driving force.

In the absence of the driving force, the damping coefficient drives the
system to the point (#,6) = (0,0), which is an attractor for the system.
This continues to happen for small enough A, but for A > A. the behavior
of the system becomes more complicated.

The program that integrates the equations of motion of the system can
be obtained by making trivial changes to the program in the file d1o.cpp.
This changes are listed in detail below, but we note that X1 < 0, X2 < 9,
a_0 <> A. The final program can be found in the file fdp.cpp. It is listed
below, with the understanding that the commands in between the dots
are the same as in the programs found in the files dlo.cpp, rk.cpp.

/1

238 CHAPTER 4. MOTION OF A PARTICLE

0.7 T T T T T T T

05 B

Xo(w)

0.3 |- J i

01 + .

Figure 4.24: The oscillation amplitude zo(w) as a function of w for the forced
damped oscillator, where wy = 3.145, v = 0.5 and ap = 1.0. We observe a resonance
for w =~ wp. The points of the plot are our measurements and the line is the theoretical
prediction given by equation (4.33).

//Program to solve Forced Damped Pendulum
//using 4th order Runge—Kutta Method
// Output is written in file fdp.dat
/]

double
f2(const double& t, const double& x1, const double& x2){
return —(omega_02+2.0*%a_0*cos(omega*t))*sin(x1)—gam*x2;

void
RKSTEP (double& t, double& x1, double& x2,
const double& dt){

4.6. THE FORCED DAMPED PENDULUM 239

05 -

-15

Figure 4.25: A phase space trajectory of the forced damped oscillator with wy =
3.145, w = 2.0, v = 0.5 and ap = 1.0. The harmonic oscillation which is the steady state
of the system is an ellipse, which is an attractor of all the phase space trajectories that
correspond to different initial conditions.

const double pi = 3.14159265358979324;
const double pi2= 6.28318530717958648;
x1 =x1+h6*(k11+2.0*(k12+k13)+k14);
x2 =x2+h6*(k21+2.0*(k224k23)+k24);
if(x1 > pi) x1 —= pi2;
if(x1 < —pi) x1 += pi2;

} //RKSTEP ()

The final lines in the program are added so that the angle is kept within
the interval [—m, 7].

In order to study the system’s properties we will set wy = 1, w = 2,
and 7 = 0.2 unless we explicitly state otherwise. The natural period
of the pendulum is 7y = 27/wy = 27 ~ 6.28318530717958648 whereas
that of the driving force is 7' = 27/w = 7 ~ 3.14159265358979324. For
A < A, with A, =~ 0.18, the point (6,4) = (0,0) is an attractor, which

240 CHAPTER 4. MOTION OF A PARTICLE

0.4 T T T T T T T

0.3]

02 1

0.1 .

-0.1 -

-0.2 -

-0.3 -

0.4 I I I I I I I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 4.26: The trajectory shown in figure for ¢ > 100. The trajectory is
almost on top of an ellipse corresponding to the steady state motion of the system. This
ellipse is an attractor of the system.

means that the pendulum eventually stops at its stable equilibrium point.
For A, < A < 0.71 the attractor is a closed curve, which means that
the pendulum at its steady state oscillates indefinitely without circling
through its unstable equilibrium point at § = £7. The period of motion
is found to be twice that of the driving force. For 0.72 < A < 0.79
the attractor is an open curve, because at its steady state the pendulum
crosses the ¢ = £ point. The period of the motion becomes equal to
that of the driving force. For 0.79 < A < 1.033 we have period doubling
for critical values of A, but the trajectory is still periodic. For even larger
values of A the system enters into a chaotic regime where the trajectories
are non periodic. For A ~ 3.1 we find the system in a periodic steady
state again, whereas for A ~ 3.8 — 4.448 we have period doubling. For
A =~ 4.4489 we enter into a chaotic regime again etc. These results can
be seen in figures [t.27-%.29. The reader should construct the bifurcation
diagram of the system by solving problem I of this chapter.

4.6. THE FORCED DAMPED PENDULUM 241

Figure 4.27: A phase space trajectory of the forced damped pendulum. The
parameters chosen are wy = 1.0, w = 2.0, v = 0.2 and A = 0.60,0.72,0.85,1.02. We
observe the phenomenon of period doubling.

We can also use the so called Poincaré diagrams in order to study the
chaotic behavior of a system. These are obtained by placing a point in
phase space when the time is an integer multiple of the period of the
driving force. Then, if for example the period of the motion is equal
to that of the period of the driving force, the Poincaré diagram consists
of only one point. If the period of the motion is an n—multiple of the
period of the driving force then the Poincaré diagram consists of only
n points. Therefore, in the period doubling regime, the points of the
Poincaré diagram double at each period doubling point. In the chaotic
regime, the Poincaré diagram consists of an infinite number of points
which belong to sets that have interesting fractal structure. One way to
construct the Poincaré diagram numerically, is to process the data of the
output file £dp.dat using awkf}:

"The command can be written in one line without the final \ of the first and second
lines.

242 CHAPTER 4. MOTION OF A PARTICLE

Figure 4.28: A phase space trajectory of the forced damped pendulum. The
parameters chosen are wy = 1.0, w = 2.0, v = 0.2 and A = 1.031,1.033,1.04,1.4. We
observe the chaotic behavior of the system.

awk —v o=$omega —v nt=$Nt —v tf=$TF \
"BEGIN{T=6.283185307179/0;dt=tf/nt;} $1%I<dt{print $2,$3}°\
fdp.dat

where $omega, $Nt, $TF are the values of the angular frequency w, the
number of points of time and the final time ¢;. We calculate the period T
and the time step dt in the program. Then we print those lines of the file
where the time is an integer multiple of the periodﬁ. This is accomplished
by the modulo operation $1 % T. The value of the expression $1 7% T <
dt is true when the remainder of the division of the first column ($1) of
the file fdp.dat with the period T is smaller than dt. The results in the
chaotic regime are displayed in figure [t.30.

We close this section by discussing another concept that helps us in

“*The accuracy of this condition is limited by dt, which makes the points in the
Poincaré diagram slightly fuzzy.

4.7. APPENDIX: ON THE EULER-VERLET METHOD 243

Figure 4.29: A phase space trajectory of the forced damped pendulum. The
parameters chosen are wyp = 1.0, w = 2.0, v = 0.2 and A = 1.568,3.8,4.44,4.5. We
observe the system exiting and reentering regimes of chaotic behavior.

the analysis of the dynamical properties of the pendulum. This is the
concept of the basin of attraction which is the set of initial conditions in
phase space that lead the system to a specific attractor. Take for example
the case for A > 0.79 in the regime where the pendulum at its steady
state has a circular trajectory with a positive or negative direction. By
taking a large sample of initial conditions and recording the direction of
the resulting motion after the transient behavior, we obtain figure .

4.7 Appendix: On the Euler—Verlet Method

Equations () can be obtained from the Taylor expansion

Ot +At) = 0(t) + (AP (t) + <A2—?29”(t) + (AB—?SQ”’(t) + O((At)H)
Ot — At) = 0(t) — (A (t) + %0”@) - %0’”@) +O((At)Y).

244 CHAPTER 4. MOTION OF A PARTICLE

Figure 4.30: A Poincaré diagram for the forced damped pendulum in its chaotic
regime. The parameters chosen are wyp = 1.0, w = 2.0, vy =0.2 and A =1.4,4.5.

Figure 4.31: Basin of attraction for the forced damped pendulum. The parameters
chosen are wy = 1.0, w = 2.0, v = 0.2 and A = 0.85,1.4.

By adding and subtracting the above equations we obtain

Ot + At) +0(t — At) = 20(t) + (A)%0"(t) + O((A)*)
O(t + At) — 0t — At) = 2(AH'(t) + O((At)?) (4.35)

which give equations (&.11)

O(t+At) = 20(t) — 0(t — At) + (At)*a(t) + O((At)?H)

oty = Atz) (;g(t —A L oan?) (4.36)

From the first equation and equations (%.9) we obtain:

O(t + At) = 0(t) +w(t)(At) + O((At)?) (4.37)

4.7. APPENDIX: ON THE EULER-VERLET METHOD 245

When we perform a numerical integration, we are interested in the
total error accumulated after N — 1 integration steps. In this method,
these errors must be studied carefully:

e The error in the velocity w(t) does not accumulate because it is given
by the difference of the positions 6(t + At) — 0(t — At).

* The accumulation of the errors for the position is estimated as fol-
lows: Assume that §6(t) is the fotal accumulated error from the
integration from time ¢, to ¢. Then according to the expansions
(6.36) the error for the first step is 06(ty + At) = O((At)*). Thenl

O(to +2At) = 20(tg + At) — O(to) + At?a(ty + At) + O((A)*) =
60(tg + 2At) = 260(ty + At) — 30(te) + O((AL)")
= 20((A0)*Y) — 0+ O((A1)*Y)
= 30((At)Y).

For the next steps we obtain

O(to + 3At) = 20(to + 2At) — O(tg + At) + At*a(ty + 2At) + O((At)!) =
60(to + 3AL) = 260(ty + 2At) — 50(ty + At) + O((A)*)
= 60((A1)*) — O((AD*) + O((At))
= 60((At)Y),

O(to +4At) = 20(to + 3At) — Oty + 2At) + At?a(ty + 3At) + O((AY)*) =
§0(to + 4At) = 250(to + 3At) — 50(ty + 2At) + O((A1)*)
= 120((At)*) — 30((At)*) + O((At)*)
= 100((At)").
Then, inductively, if §0(ty + (n — 1)At) = @(’)((At)”‘), we obtain
9(t0 + TlAt) = 29<t0 + (n — 1)At) — H(to + (n — 2)At> + At2@(t0 + (n — 1)At)
+O((ADY) =
§0(to +nAt) = 250(tg + (n — 1)At) — 50(to + (n — 2)At) + O((At)*)

= Doant - == Hogant) + oan
_ n(n2—|- 1)(9((At)4) '

= 2

“Remember that the acceleration «(t) is given, therefore da(t) = 0.

246 CHAPTER 4. MOTION OF A PARTICLE

Finally
wo((m)‘*) ~ L(’)((Az&)“) ~ O((At)?).

59(t0 + nAt) = AL
(4.38)

Therefore the total error is O((At)?).
We also mention the Velocity Verlet method or the Leapfrog method.
In this case we use the velocity explicitly:

1
9n+1 = Qn -+ wnAt + §OénAt2
1

Wyl = wnt §anAt
1
Wpt1 = wn—{-% —+ §Oén+1At . (4.39)

The last step uses the acceleration «,,; which should depend only on
the position 6,,+; and not on the velocity.

The Verlet methods are popular in molecular dynamics simulations of
many body systems. One of their advantages is that the constraints of
the system of particles are easily encoded in the algorithm.

4.8 Appendix: 2nd order Runge—Kutta Method

In this appendix we will show how the choice of the intermediate point
2 in equation (f.17) reduces the error by a power of h. This choice is
special, since by choosing another point (e.g. ¢ = ¢, + 0.4h) the result
would have not been the same. Indeed, from the relation

dl’ tn+1
= J{t,3) = Ty = v+ / F(t2)dz. (4.40)
tTL

By Taylor expanding around the point (¢,1/2, Zn41/2) We obtain

f(t,x) = f(tns1/2, Tngry2) + (t — tn+1/2)fi—£(tn+1/2) +O(h?). (4.41)

4.8. APPENDIX: 2ND ORDER RUNGE-KUTTA METHOD 247

Therefore

/tn+1 f(t,x)dx
n p

= f(tns1/2, Tng1y2) (tnp1 — tn) + %(tn—&—l/Q)
+O(h?) (tng1 — tn)

tn+1

(t —tpt1y2)?
2

ln

df (tni1 — tn 2 (ty—t, 2
— f(tn+1/2, $n+1/2)h -+ E(tn+l/2) { +1 5 +1/2) B 2+1/2)
+O(h*)h
df W2 (—h)?
= f(tn+1/2, l’n+1/2)h + %(tn_i_l/z) {E _ (:) } + O(h3)
= f(tn_H/Q, $n+1/2)h + O(h3> . (442)

Note that for the vanishing of the O(h) term it is necessary to place the
intermediate point at time ¢, /2

This is not a unique choice. This can be most easily seen by a different
analysis of the Taylor expansion. Expanding around the point (¢,,z,)
we obtain

dr, 1 d’z,,
Tpt1 = Tp+ (tn—i-l - tn)% + §<tn+1 - tn)2 12
h2 df
- n h n —= h3
T, + hfn + 5 + O(h?)

h? (0f, Ofndx, 3
7((% i dt)+o(h)
h? (8fn Ofn

o v Yin “Jn 3
= ot hfot v n)+(9(h), (4.43)

+ O(h?)

= xp+hf,+

where we have set f, = f(t,,z,), % = %(z,) etc. We define

ki = f(tnaxn) = fn
k‘g f(tn + CLh, T, + bhl{?l)
Tnt1 — Tp + h(Clkl -+ Cgkg) . (444)

and we will determine the conditions so that the terms O(h?) of the last
equation in the error are identical with those of equation (.43). By

248 CHAPTER 4. MOTION OF A PARTICLE

expanding ky; we obtain

k’g = f(tn + ah, Ty + bhk’l)

= f(tn,z, + bhky) + hagf

of

(tn, 2n + bhk1) + O(h?)
of

Ox ot

= f +h{a% +bk1%f”} + O(h?)

Ofn
ot

= f(tn, 1) + hbki=—(tn, 1) + ha—=(t,, z,) + O(h?)

= fn+h{ +bfn O }+(’)(h2) (4.45)

Substituting in (4.44) we obtain
Tpt1 = Tn+h(crkn + coky)

— xn+h{01fn+02fn+02h(aa];” +bfnaf”) +(9(h2)}

2 ot
+O(h?) . (4.46)

= Iy + h(Cl + CQ)fn —+ h—2 <(202a) af (202b)fn f)

All we need is to choose

cp+c = 1
20 = 1

The choice ¢; = 0, ¢ = 1, a = b = 1/2 leads to equation (). Some
other choices in the bibliography are ¢; = 1/2 and ¢, = 3/4.

4.9.

PROBLEMS 249

4.9 Problems

41

4.2

4.3

4.4

4.5

4.6

Prove that the total error in the Euler—Cromer method is of order
At.

Reproduce the results in figures

Improve your programs so that there is no accumulation of roundoft
error in the calculation of time when h is very small for the methods
Euler, Euler-Cromer, Euler-Verlet and Runge-Kutta. Repeat the
analysis of the previous problem.

Compare the results obtained from the Euler, Euler-Cromer, Euler-
Verlet, Runge-Kutta methods for the following systems where the
analytic solution is known:

(a) Particle falling in a constant gravitational field. Consider the
case v(0) =0, m =1, g = 10.

(b) Particle falling in a constant gravitational field moving in a fluid
from which exerts a force F' = —kv on the particle. Consider
the case v(0) =0, m =1, g =10 k = 0.1,1.0,2.0. Calculate the
limiting velocity of the particle numerically and compare the
value obtained to the theoretical expectation.

(¢) Repeat for the case of a force of resistance of magnitude |F| =
kv?.

Consider the damped harmonic oscillator

2
(fle + ”yccli—f + wor = 0. (4.48)
Take wy = 3.145, v = 0.5 and calculate its mechanical energy as a
function of time. Is it monotonic? Why? (show that d(E/m)/dt =
—~v?). Repeat for v = 4,5,6,7,8. When is the system oscillating
and when it’s not? Calculate numerically the critical value of 7
for which the system passes from a non oscillating to an oscillating
regime. Compare your results with the theoretical expectations.

Reproduce the results of figures [.19-%.22.

250

4.7

4.8

4.9

4.10

411

4.12

4.13

CHAPTER 4. MOTION OF A PARTICLE

Reproduce the results of figures [¢.23-%.26. Calculate the phase d(w)
numerically and compare with equation (4.33).

Consider a simple model for a swing. Take the damped harmonic
oscillator and a driving force which periodically exerts a momen-
tary push with angular frequency w. Define “momentary” to be an
impulse given by the acceleration a, by an appropriately small time
interval At. The acceleration is 0 for all other times. Calculate the
amplitude zy(w) for wy = 3.145 and v = 0.5.

Consider a “half sine” driving force on a damped harmonic oscilla-

tor
{ agcoswt coswt > 0
a(t) =

0 coswt <0

Study the transient behavior of the system for several initial con-
ditions and calculate its steady state motion for wy = 3.145 and
v = 0.5. Calculate the amplitude zy(w).

Consider the driving force on a damped oscillator given by
1 1 2 2
a(t) = — + 5 cosw + 3—Wc0s2wt — 15—7Tcos4wt

Study the transient behavior of the system for several initial con-
ditions and calculate its steady state motion for wy, = 3.145 and
v = 0.5. Calculate the amplitude x¢(w). Compare your results with
those of the previous problem and comment about.

Write a program that simulates N identical, independent harmonic
oscillators. Take N = 20 and choose random initial conditions for
each one of them. Study their trajectories in phase space and check
whether they cross each other. Comment on your results.

Place the N = 20 harmonic oscillators of the previous problem in
a small square in phase space whose center is at the origin of the
axes. Consider the evolution of the system in time. Does the shape
of the rectangle change in time? Does the area change in time?
Explain...

Repeat the previous problem when each oscillator is damped with
v = 0.5. Take wy = 3.145.

4.9.

414

4.15

4.16
4.17
4.18

4.19

PROBLEMS 251

Consider the forced damped oscillator with w =2, wy = 1.0, v = 0.2.
Study the transient behavior of the system in the plots of 6(¢), 0(t)
for A = 0.1,0.5,0.79,0.85,1.03, 1.4.

Consider the forced damped pendulum with w = 2, wy = 1.0, v = 0.2
and study the phase space trajectories for A = 0.1, 0.19, 0.21, 0.25,
0.5, 0.71, 0.79, 0.85, 1.02, 1.031, 1.033, 1.05, 1.08, 1.1, 1.4, 1.8, 3.1,
3.5, 3.8, 4.2, 4.42, 4.44, 4.445, 4.447, 4.4488. Consider both the
transient behavior and the steady state motion.

Reproduce the results in figures [4.30.

Reproduce the results in figures [6.31.

Consider the forced damped oscillator with
wp=1, w=2, =02

After the transient behavior, the motion of the system for A = 0.60,
A = 0.75 and A = 0.85 is periodic. Measure the period of the
motion with an accuracy of three significant digits and compare it
with the natural period of the pendulum and with the period of
the driving force. Take as initial conditions the following pairs:
(6o, 60) = (3.1,0.0), (2.5,0.0), (2.0,0.0), (1.0,0.0), (0.2,0.0), (0.0,1.0),
(0.0,3.0), (0.0,6.0). Check if the period is independent of the initial
conditions.

Consider the forced damped pendulum with
wp=1, w=2, =02

Study the motion of the pendulum when the amplitude A takes
values in the interval [0.2,5.0]. Consider specific discrete values of
A by splitting the interval above in subintervals of width equal to
0A = 0.002. For each value of A, record in a file the value of A, the
angular position and the angular velocity of the pendulum when
ty = km with k = Kians, Ktrans + 1, Etrans + 2, -+, Kmagt

A O (tx) 6(tr)

The choice of k;..ns is made so that the transient behavior will be
discarded and study only the steady state of the pendulum. You

252 CHAPTER 4. MOTION OF A PARTICLE

may take kpap = 500, Kipans = 400, t; = 0, £ = 500, and split the
intervals [ty, ¢, + 7] to 50 subintervals. Choose 6, = 3.1, 6, = 0.

(a) Construct the bifurcation diagram by plotting the points (A, 6(t)).
(b) Repeat by plotting the points (A, 6(t;)).

(c) Check whether your results depend on the choice of 6, 0p.
Repeat your analysis for 0, =0, 6, = 1.

(d) Study the onset of chaos: Take A € [1.0000,1.0400] with §A =
0.0001 and A € [4.4300,4.4500] with A = 0.0001 and compute
with the given accuracy the value A. where the system enters
into the chaotic behavior regime.

(e) The plot the points (A(),6(t)) for A = 1.034, 1.040, 1.080,
1.400, 4.450, 4.600. Put 2000 points for each value of A and
commend on the strength of the chaotic behavior of the pen-
dulum.

Chapter 5

Planar Motion

In this chapter we will study the motion of a particle moving on the
plane under the influence of a dynamical field. Special emphasis will be
given to the study of the motion in a central field, like in the problem
of planetary motion and scattering. We also study the motion of two
or more interacting particles moving on the plane, which requires the
solution of a larger number of dynamical equations. These problems
can be solved numerically by using Runge—Kutta integration methods,
therefore this chapter extends and applies the numerical methods studied
in the previous chapter.

5.1 Runge—Kutta for Planar Motion

In two dimensions, the initial value problem that we are interested in, is
solving the system of equations (4.6)

& Lo — ot)

o = U i GRS A

dy dv

o = U d_ty = ay(t,z,0,,y,v,y) . (5.1)

The 4th order Runge-Kutta method can be programmed by making
small modifications of the program in the file rk.cpp. In order to facil-
itate the study of many different dynamical fields, for each field we put
the code of the respective acceleration in a different file. The code which
is common for all the forces, namely the user interface and the imple-
mentation of the Runge-Kutta method, will be put in the file rk2.cpp.

253

2504 CHAPTER 5. PLANAR MOTION

The program that computes the acceleration will be put in a file named
rk_XXX.cpp, where XXX is a string of characters that identifies the force.
For example, the file rk2_hoc.cpp contains the program computing the
acceleration of the simple harmonic oscillator, the file rk2_g.cpp the ac-
celeration of a constant gravitational field § = —g ¥ etc.

Different force fields will require the use of one or more coupling con-
stants which need to be accessible to the code in the main program and
some subroutines. For this reason, we will provide two variables k1, k2
in the global scope which will be accessed by the acceleration functions
£3 and f4, the function energy and the main program where the user
will enter their. The initial conditions are stored in the variables X10
2o, X20 <> Yo, V10 < vy0, V20 > vy, and the values of the functions
of time will be stored in the arrays X1[P] < z(t), X2[P] <« y(t), V1[P]
< v,(t), V2[P] 4> v,(t). The integration is performed by a call to the
function RK(Ti,Tf,X10,X20,V10,V20,Nt) The results are written to the
file rk2.dat. Each line in this file contains the time, position, velocity and
the total mechanical energy, where the energy is calculated by the func-
tion energy(t,x1,x2,v1,v2). The code for the function energy, which
is different for each force field, is written in the same file with the ac-
celeration. The code for the function RKSTEP (t,x1,x2,x3,x4,dt) should
be extended in order to integrate four instead of two functions. The full
code is listed below:

//
//Program to solve a 4 ODE system using Runge—Kutta Method
// User must supply derivatives

//dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)
//dx3/dt=f3(t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)

// as double functions

//Output is written in file rk2.dat

/]
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
//
const int P = 1010000;

double T[P], X1[P], X2[P], Vi[P], V2[P];

5.1. RUNGE-KUTTA FOR PLANAR MOTION

double k1 ,k2;

/]

double

f1(const double& t , const double& x1, const double& x2,
const double& v1 , const double& v2);

double

f2(const double& t , const double& x1, const double& x2,
const double& vi , const double& v2);

double

f3(const double& t , const double& x1, const double& x2,
const double& v1 , const double& v2);

double

f4(const double& t , const double& x1, const double& x2,
const double& v1 , const double& v2);

double

energy
(const double& t , const double& x1, const double& x2,
const double& v1 , const double& v2);

void

RK(const double& Ti , const double& Tf
const double& X10, const double& X20,
const double& V10, const double& V20,
const int & Nt);

void

RKSTEP (double& t

double& x1, double& x2,
double& x3, double& x4,
const double& dt);
/]

int main() |
string buf;
double Ti, Tf,X10,X20,V10,V20;
int Nt,i ;
double EO,EF,DE;
// Input:
cout << “Runge—Kutta Method for 4—ODEs Integration\n
cout << “Enter coupling constants:\n”;
cin >> k1 >> k2;getline(cin,buf);
cout << "kil= 7 <K k1 < 7 k2= 7 < k2 < endl;
cout << "Enter Nt,Ti,Tf,X10,X20,V10,V20:\n”;
cin >> Nt >> Ti >> Tf>> X10 >> X20 >> V10 >> V20;
getline(cin,buf);
cout << "Nt = 7 < Nt < endl;
cout < "Time: Initial Ti = 7 < Ti
< ” Final Tf= "~ <K Tf <K endl;

”
’

255

256 CHAPTER 5. PLANAR MOTION

cout <K 7 X1(Ti)= ” <L X10

< ” X2(Ti)=" << X20 << endl;
cout << 7 VI(Ti)= > < V10

<L V2(Ti)=" <L V20 << endl;

// Calculate:
RK(Ti,Tf,X10,X20,V10,V20 ,Nt);
ofstream myfile(”rk2.dat”);
myfile.precision(17);
for (i=0;i<Nt;i++)
myfile << T [i] <K 7 7
KL XL[i] <7 7 KL R2[i] K7 T
KL VL[L] <« 7 7 KL v2li] <77
< energy(T[i],X1[i],X2[i],V1[i],V2[i])
<< endl;
myfile.close();
// Rutherford scattering angles:
cout.precision(17);
cout <v—angle: "<< atan2(V2[Nt—1],Vi[Nt—1]) << endl;
cout <<’b—angle: "< 2.0*atan(k1/(V10*V10*X20))<< endl;
EO=energy (Ti ,X10 ,X20 ,V10 ,V20);
EF=energy (T[Nt —1],X1[Nt —1],X2[Nt —1], V1[Nt —1],V2[Nt —1]);
DE = abs(0.5*(EF—E0) /(EF+E0));
cout << “EO,EF, DE/E= ” << EO

L7 < EF
L7 << DE << endl;
} //main ()
/1]
// The velocity functions f1,f2(t,x1,x2,v1l,v2)
/]
double

f1(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2){
return vli;
1
//
double
f2(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2){
return v2;

}
//
//RK(Ti, Tf,X10,X20,V10,V20,Nt) is the driver
//for the Runge—Kutta integration routine RKSTEP
//Input: Initial and final times Ti, Tt

// Initial values at t=Ti X10,X20,V10,V20

5.1. RUNGE-KUTTA FOR PLANAR MOTION 257

// Number of steps of integration: Nt—1
// Size of arrays T,X1,X2,V1,V2

//Output: real arrays T[Nt],X1[Nt] ,X2[Nt],

// V1[Nt],V2[Nt] where

//T[O] = Ti X1[0] X10 X2[0] = X20 V1[0] = V10 V2[0] = V20

/] X1[k] = X1(Cat t=T[k]) X2[k] = X2(at t=T[k])
/] Vi[k] = Vi(Cat t=T[k]) V2[k] = V2(at t=T[k])
//T[Nt—1]= Tt

[/

void

RK(const double& Ti , const double& Tf
const double& X10, const double& X20,
const double& V10, const double& V20,
const int & Nt){

double dt;
double TS,X1S,X2S; //values of time and X1,X2 at given step
double V1S ,V2S;

int i;

// Initialize :

dt = (Tf-Ti) /(Nt—1);

T [0] = Ti;

X1[0] = X10; X2[0] = X20;
Vi[0] = vi10; V2[0] = V20;
TS = Ti;

X1S = X10; X2S = X20;
Vis = V10; V2S = V20;

//Make RK steps: The arguments of RKSTEP are

// replaced with the new ones

for(i=1;i<Nt;i++){
RKSTEP(TS,X1S,X2S,V1S,V2S.,dt);

T [i] = TS;
X1[i] = X1S; X2[i] = X2S;
Vi[i] = V1S; V2[i] = v2s;
}
} //RK(O)

//
// Subroutine RKSTEP(t,x1,x2,dt)

//Runge—Kutta Integration routine of ODE
//dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)
//dx3/dt=f3 (t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)
// User must supply derivative functions:

//real function f1(t,x1,x2,x3,x4)

//real function f2(t,x1,x2,x3,x4)

//real function f3(t,x1,x2,x3,x4)

258 CHAPTER 5. PLANAR MOTION

//real function f4(t,x1,x2,x3,x4)
// Given initial point (t,x1,x2) the routine advances it
//by time dt.

// Input Inital time t and function values x1,x2,x3,x4
//Output: Final time t+dt and function values x1,x2,x3,x4
// Careful: values of t,x1,x2,x3,x4 are overwritten ...
//
void
RKSTEP (double& t ,

double& x1, double& x2,

double& x3, double& x4,

const double& dt) {

double k11 ,k12,k13,k14,k21,k22,k23,k24;
double k31,k32,k33,k34,k41,k42,k43,k44;
double h,h2,h6;

h =dt; // h = dt, integration step
h2=0.5*h; // h2 = h/2
h6=h/6.0; // h6 = h/6

k11=Ff1(t,x1,x2,x3,x4);
k21=f2(t,x1,x2,x3,x4);
k31=f3(t,x1,x2,x3,x4);
k41=f4(t,x1,x2,x3,x4);

k12=f1(t+h2,x1+h2*k11,x2+h2%*k21 ,x3+h2*k31 ,x4+h2*k41) ;
k22=f2(t+h2,x1+h2%*k11 ,x2+h2*k21 ,x3+h2*%k31 ,x4+h2%*k41) ;
k32=f3(t+h2,x1+h2*k11,x2+h2%*k21 ,x3+h2*k31 ,x4+h2*k41);
k42=f4(t+h2,x1+h2*k11,x2+h2%*k21 ,x3+h2*k31 ,x4+h2*k41);

k13=f1(t+h2,x1+h2*%k12,x2+h2%k22,x3+h2%k32,x4+h2%k42) ;
k23=f2(t+h2,x1+h2*k12,x2+h2%k22,x3+h2%k32,x4+h2%k42) ;
k33=f3(t+h2,x1+h2*k12,x2+h2%k22 ,x3+h2%*k32 ,x4+h2%¥k42) ;
k43=f4(t+h2,x1+h2*%k12,x2+h2%k22,x3+h2%*k32 ,x4+h2%¥k42) ;

k14=f1(t+h ,x1+4+h *k13,x2+h *k23,x3+h *k33,x4+h *k43);
k24=f2(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43);
k34=f3(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43);
k44=f4(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43);
t =t+h;

x1=x1+h6*(k11+2.0*(k12+k13)+k14);
x2=x2+h6*(k21+2.0*(k22+k23)+k24) ;
x3=x3+h6*(k31+2.0*%(k324+k33)+k34);
x4=x4+h6*(k41+2.0*(k42+k43)+k44);

5.2. PROJECTILE MOTION 259

} //RKSTEP ()

5.2 Projectile Motion

Consider a particle in the constant gravitational field near the surface of

the earth which moves with constant acceleration § = —¢gy so that
o(t) =xot+vt , y(t) =yo+ oyt — 59t°
va(t) = vog , yy(t) = UOy gt (5.2)
a(t) =0 ,ay(t) =

The particle moves on a parabolic trajectory that depends on the initial
conditions

(y—w0) = (Uﬂ) (:C—xo)—%%(x_xo)z

Vo Vo
20
= tanf (z — 2) Ela; (z — x0)?, (5.3)

where tanf = vy, /vg, is the direction of the initial velocity and hmay is
the maximum height of the trajectory.

The acceleration a,(t) = 0 a,(t) = —g (a, <> £3, a, <> £4) and the
mechanical energy is coded in the file rk2_g. cpp:

/]
//The acceleration functions f3,f4(t,x1,x2,vl,v2) provided
//by the user

/1l
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
extern double ki1 ,k2;

[/
// Free tall in constant gravitational field with
/g = —k2

double

260 CHAPTER 5. PLANAR MOTION
0.25 T 0.06 T
X5 —— o —
ozl 0.05
0.04 +
0.15 +
0.03 +
0.1 -
0.02 +
0.05 + 0.01 |
0 : : : : 0 : : :
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
Lot N p— ! Ty p—
1.005 F 05
1 Bl 0r
0.995 | -0.5 +
0.99] 2l
0.985 ‘ ‘ ‘ ‘ 15 ‘ ‘ ‘ ‘
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

Figure 5.1: Plots of x(t), y(t), v, (t). vy(t) for a projectile fired in a constant gravita-

tional field ¢ = —10.0 ¢ with initial velocity vp = & + 3.

f3(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2) {
return 0.0; // dx3/dt=dvl/dt=al

1

/]

double

f4(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2) {
return —ki1; // dx4/dt=dv2/dt=a2

!

/]

double

energy
(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2){

return 0.5*(vi*vi4v2*v2) + k1*x2;

}

In order to calculate a projectile’s trajectory you

may use the following

5.2. PROJECTILE MOTION 261

0.06 T T T T 1.8e-05

"E()-E(0) ——
1.6e-05 - 9
0.05 +

1.4e-05 ¢

0.04 1.2e-05 |

-~ 003l 1e-05 |-
8e-06 |-
0.02 6e-06 |

0.01 - 4e-06

2e-06 [
0

0 005 01 015 02 025 0
X

Figure 5.2: (Left) The parabolic trajectory of a projectile fired in a constant gravi-
tational field § = —10.09 with initial velocity 7y = Z + §. (Right) The deviation of the
projectile’s energy from its initial value is due to numerical errors.

commands:

> g++ —02 rk2.cpp rk2_g.cpp —o rk2

> ./rk2

Runge—Kutta Method for 4—0DEs Integration

Enter coupling constants:

10.0 0.0

k1= 10 k2= 0

Enter Nt,Ti,Tf,X10,X20,V10,V20:

20000 0.0 0.2 0.0 0.0 1.0 1.0

Nt = 20000

Time: Initial Ti = 0 Final Tf= 0.2
X1(Ti)= 0 X2(Ti)=0
Vi(Ti)= 1 v2(Ti)=1

The analysis of the results contained in the file rk2.dat can be done using
gnuplot:

gnuplot> set terminal x11 1
gnuplot> plot "rk2.dat” using 1:2 with lines title "x(t)”
gnuplot> set terminal x11 2
gnuplot> plot "rk2.dat” using 1:3 with lines title "y(t)”
gnuplot> set terminal x11 3
gnuplot> plot "rk2.dat” using 1:4 with lines title “vx(t)”
gnuplot> set terminal x11 4
gnuplot> plot "rk2.dat” using 1:5 with lines title "vy(t)”
gnuplot> set terminal x11 5

262 CHAPTER 5. PLANAR MOTION

gnuplot> plot "rk2.dat” using 1:($6—1.0) w lines t "E(t)E—(0)”
gnuplot> set terminal x11 6

gnuplot> set size square

gnuplot> set title "Trajectory”

gnuplot> plot “rk2.dat” using 2:3 with lines notit

The results can be seen in figures 5.1 and 5.2. We note a small increase
in the mechanical energy which is due to the accumulation of numerical
errors.

We can animate the trajectory by writing a script of gnuplot com-
mands in a file rk2_animate.gpl

icount = icount+skip
plot 7<cat —n rk2.dat” \
using 3:($1<= icount ? $4: 1/0) with lines notitle
pause 1
if (icount < nlines) reread

Before calling the script, the user must set the values of the variables
icount, skip and nlines. Each time gnuplot reads the script, it plots
icount number of lines from rk2.dat. Then the script is read again and
a new plot is made with skip lines more than the previous one, unless
icount < nlines. The plotted “file” "<cat -n rk2.dat" is the standard
output (stdout) of the command cat -n rk2.dat which prints to the
stdout the contents of the file rk2.dat line by line, together with the
line number. Therefore the plot command reads data which are the line
number, the time, the coordinate x, the coordinate y etc. The keyword
using in

using 3:($1<= icount ? $4: 1/0)

instructs the plot command to use the 3rd column on the horizontal axis
and if the first column is less than icount ($1<= icount) put on the
vertical axis the value of the 4th column if the first column is less than
icount. Otherwise ($1 > icount) it prints an undefined number (1/0)
which makes gnuplot print nothing at all. You may also uncomment the
command pause if you want to make the animation slower. In order to
run the script from gnuplot, issue the commands

5.2. PROJECTILE MOTION 263

gnuplot> icount 10

gnuplot> skip = 200

gnuplot> nlines = 20000
gnuplot> load “rk2_animate.gpl”

The scripts shown above can be found in the accompanying software.
More scripts can be found there that automate many of the boring pro-
cedures. The usage of two of these is explained below. The first one is
in the file rk2_animate.csh:

> ./rk2_animate.csh —h
Usage: rk2_animate.csh —t [sleep time] —d [skip points] <file>
Default file is rk2.dat
Other optiomns:
—x: set lower value in Xrange
—X: set lower value in xrange
—y: set lower value in yrange
—Y: set lower value in yrange
—r: automatic determination of x—y range
> ./rk2_animate.csh —r —d 500 rk2.dat

The last line is a command that animates a trajectory read from the
file rk2.dat. Each animation frame contains 500 more points than the
previous one. The option -r calculates the plot range automatically. The
option -h prints a short help message.

A more useful script is in the file rk2.csh.

> ./rk2.csh —h

Usage: rk2.csh —f <force> k1l k2 x10 x20 v10 v20 STEPS tO tf
Other Options:

—n Do not animate trajectory

Available forces (value of <force>):

1: ax=—kil ay= —k2 y Harmonic oscillator
2: ax= 0 ay= —k1 Free fall
3: ax= —k2 VX ay= —k2 vy — k1 Free fall + \

air resistance ~ v
4: ax= —k2 lvl vx ay= —k2 lvlvy — k1 Free fall + \

air resistance ~ vA2
5: ax= k1*x1/r”3 ay= k1*x2/rA3 Coulomb Force

The option -h prints operating instructions. A menu of forces is available,

264 CHAPTER 5. PLANAR MOTION

and a choice can be made using the option -f. The rest of the command
line consists of the parameters read by the program in rk2.cpp, i.e. the
coupling constants k1, k2, the initial conditions x10, x20, v10, v20
and the integration parameters STEPS, tO and tf. For example, the
commands

> rk2.csh -f 2 -- 10.0 0.0 0.0 0.0 1.0 1.0 20000 0.0 0.2
> rk2.csh -f 1 -- 16.0 1.0 0.0 1.0 1.0 0.0 20000 0.0 6.29
> rk2.csh -f 5 -- 10.0 0.0 -10 0.2 10. 0.0 20000 0.0 3.00

compute the trajectory of a particle in the constant gravitational field
discussed above, the trajectory of an anisotropic harmonic oscillator (k1
= a, = —wizr, k2 = a, = —w3y) and the scattering of a particle in a
Coulomb field — try them! I hope that you will have enough curiosity to
look “under the hood” of the scripts and try to modify them or create
new ones. Some advise to the lazy guys: If you need to program your
own force field follow the recipe: Write the code of your acceleration field
in a file named e.g. rk2_myforce.cpp as we did with rk2_g.cpp. Edit
the file rk2.csh and modify the line

set forcecode = (hoc g vg v2g cb)

to

set forcecode = (hoc g vg v2g cb myforce)

(the variable $forcecode may have more entries than the ones shown
above). Count the order of the string myforce, which is 6 in our case. In
order to access this force field from the command line, use the option -f
6:

> rk2.csh —f 6 —

Now, we will study the effect of the air resistance on the motion of the
projectile. For small velocities this is a force proportional to the velocity
F. = —mkv, therefore

a, = —kuv,

a, = —kv,—g. (5.4)

5.2. PROJECTILE MOTION 265

By taking
z(t) = zo+ oo (1—e™)
Tk
1 g - g
y(t) = yO+E(UOy+E> (1-e kt) _Et
v.(t) = vpe™™
gy - g
'Uy(t) = ('on -+ E) e ki _ E s (55)
we obtain the motion of a particle with terminal velocity v,(4+00) = —g/k

(z(+00) = const., y(+00) ~).
The acceleration caused by the air resistance is programmed in the
file (k1 <> g, k2 <> k) rk2_vg.cpp:

//
// The acceleration functions f3,f4(t,x1,x2,v1,v2) provided
//by the user
//
// Free tall in constant gravitational filled with
//ax = —k2 vx ay = —k2 vy — ki
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
extern double ki1 ,k2;
//
double
f3(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2){
return —k2*v1; // dx3/dt=dvl/dt=al

}
[/
double
f4(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2){
return —k2*v2-k1; // dx4/dt=dv2/dt=a2

}
/]
double
energy

266 CHAPTER 5. PLANAR MOTION

(const double& t , const double& x1,
const double& v1, const double& v2) {
return 0.5*(vi*vi+v2*v2) + ki1*x2;

const double& x2,

}

The results are shown in figure 5.3 where we see the effect of an in-
creasing air resistance on the particle trajectory. The effect of a resistance

force of the form F, = —mkv?d is shown in figure p.4.
oos | T i
' 10 12r 1.0
5.0 5.0
0.04 - 10.0 1t 10.0
20.0 20.0
003 | 300 - 0s | 300 -
> > e
/ 0.6
002+ /
I 0.4t -
0.01 o2 | //
ob— ‘ : 0k — ‘ ‘ ‘
0.05 0.1 0.15 0.2 0.2 0.4 0.6 0.8

Figure 5.3:

X

The trajectory of a projectile moving in a constant gravitational field
g = —109y with air resistance causing acceleration @, = —kv for k = 0,0.2, 1, 5, 10, 20, 30.

X

The left plot has ¥(0) = & + g and the right plot has #(0) = 52 + 5.

0.05 00 —— 0.0
.05 - 0.2 0.2
1.0 12r 1.0
5.0 5.0
0.04 |- 10.0 1t 10.0
20.0 200
300 - 30,0 -
003 | 08
> >
0.6 |
0.02 |
/ 04
001f/ -
/ 02}
/ //
0 3 i L L 0 ‘ s L 4 L L
0.05 01 0.15 02 0.2 0.4 06 08

Figure 5.4: The trajectory of a projectile moving in a constant gravitational field § =
kv for k = 0,0.2,1,5,10, 20, 30.

X

14

—10y with air resistance causing acceleration @,
The left plot has ¥(0) = & + y and the right plot has #(0) = 52 + 5.

X

5.3. PLANETARY MOTION 267

5.3 Planetary Motion
Consider the simple planetary model of a “sun” of mass M and a planet

“earth” at distance r from the sun and mass m such that m < M. Ac-
cording to Newton’s law of gravity, the earth’s acceleration is

G=gf= —"fp=_"Tp (5.6)

where G = 6.67 x 1O_Hkg¥153ec2’ M = 1.99 x 10%kgr, m = 5.99 x 10**kgr.

When the hypothesis m < M is not valid, the two body problem is
reduced to that of the one body problem with the mass replaced by the

reduced mass p
1 1 1

= — 4+ —.
w m M

The force of gravity is a central force. This implies conservation of the
angular momentum L = 7 x p with respect to the center of the force,
which in turn implies that the motion is confined on one plane. We
choose the z axis so that

— ~ A

L =L,k =m(zv, — yv, k. (5.7
The force of gravity is conservative and the mechanical energy

1 GmM
Ezémvz— m

(5.8)

r

is conserved. If we choose the origin of the coordinate axes to be the
center of the force, the equations of motion (5.6) become

GM
A, — ——332'
r
GM
CLy = —T—3y, (59)

where 72 = 2% +y%. This is a system of two coupled differential equations
for the functions z(t), y(t). The trajectories are conic sections which are
either an ellipse (bound states - “planet”), a parabola (e.g. escape to
infinity when the particle starts moving with speed equal to the escape
velocity) or a hyperbola (e.g. scattering).

268 CHAPTER 5. PLANAR MOTION
Kepler’s third law of planetary motion states that the orbital period
T of a planet satisfies the equation

2
dr= 4

GMa , (5.10)

where a is the semi-major axis of the elliptical trajectory. The eccentricity
is a measure of the deviation of the trajectory from being circular

T =

b2
e=4/1-—, (5.11)

a
where b is the semi-minor axis. The eccentricity is O for the circle and
tends to 1 as the ellipse becomes more and more elongated. The foci F}
and F, are located at a distance ea from the center of the ellipse. They

have the property that for every point on the ellipse

The acceleration given to the particle by Newton’s force of gravity is
programmed in the file rk2_cb.cpp:

/]
// The acceleration functions f3,f4(t,x1,x2,vl,v2) provided
//by the user
/]
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
extern double k1,k2;
/]
// Motion in Coulombic potential:
[/ ax= k1*x1/rA3 ay= k1*x2/rA3
double
f3(const double& t , const double& x1, const double& x2,

const double& v1, const double& v2) {

double r2,r3;

r2=x1*x1+x2*x2;

r3=r2*sqrt(r2);

if (r3>0.0)

5.3. PLANETARY MOTION 269

return ki1*x1/r3; // dx3/dt=dvil/dt=al
else
return 0.0;
}
/]
double
f4(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2) {
double r2,r3;
r2=x1*x1+x2*x2;
r3=r2*sqrt(r2);

if (r3>0.0)
return ki1*x2/r3; // dx4/dt=dv4/dt=a4
else

return 0.0;
}
//
double
energy
(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2)/{
double r;
r=sqrt(x1*x1+x2*x2);
if(r> 0.0)
return 0.5*(vi*vi+v2*v2) + ki/r;
else
return 0.0;

We set k1= —GM and take special care to avoid hitting the center of the
force, the singular point at (0,0). The same code can be used for the
electrostatic Coulomb field with k1= ¢Q/4meqm.

At first we study trajectories which are bounded. We set GM = 10,
z(0) = 1.0, y(0) = 0, v, = 0 and vary vp,. We measure the period 7" and
the length of the semi axes of the resulting ellipse. The results can be
found in table p.1. Some of the trajectories are shown in figure p.5. There
we can see the dependence of the size of the ellipse on the period. Figure

confirms Kepler’s third law of planetary motion given by equation

BAQ.

In order to confirm Kepler’s third law of planetary motion numeri-

270 CHAPTER 5. PLANAR MOTION

Vox T/2 2a

3.2 | 1.030 | 2.049
3.4 | 1.281 | 2.370
3.6 |1.682 | 2.841
3.8 |2.396 | 3.597
4.0 |3.927 | 5.000
41 | 5514 |6.270
4.2 | 8.665 | 8.475
4.3 |16.931 | 13.245
4.3 | 28.088 | 18.561
4.38 | 42.652 | 24.522
4.40 | 61.359 | 31.250
4.42 | 99.526 | 43.141

Table 5.1: The results for the period T and the length of the semi-major axis a of
the trajectory of planetary motion for GM = 10, 2(0) = 1.0, y(0) = 0, vo, = 0.

cally, we take the logarithm of both sides of equation (5.10)

3 1 472
lnT—§lna—|—§ln (GM) . (5.13)

Therefore, the points (Ina,InT) lie on a straight line. Using a linear least
squares fit we calculate the slope and the intercept which should be equal
to 3 and 1/21n (47%/GM) respectively. This is left as an exercise.

In the case where the initial velocity of the particle becomes larger
than the escape velocity v., the particle escapes from the influence of the
gravitational field to infinity. The escape velocity corresponds to zero
mechanical energy, which gives

p2 o 2GM (5.14)

®

When GM = 10, z(0) = 1.0, y(0) = 0, we obtain v, ~ 4.4721.... The
numerical calculation of v, is left as an exercise.

5.4. SCATTERING 271

S R TP A—

6 | S

at 1605
o C |

4t ’

6 F i

-8 - ' : ' ' ' '

-14 -12 -10 -8 6 -4 -2 0 2
X

Figure 5.5: Planetary trajectories for GM = 10, z(0) = 1.0, y(0) = 0, voy, = 0 and
vog = 3.6, 3.8, 4.0, 4.1, 4.3. The numbers are the corresponding half periods.

5.4 Scattering

In this section we consider scattering of particles from a central potentialf|.
We assume particles that follow unbounded trajectories that start from
infinity and move almost free from the influence of the force field towards
its center. When they approach the region of interaction they get deflected
and get off to infinity in a new direction. We say that the particles have
been scattered and that the angle between their original and final direction
is the scattering angle ¢. Scattering problems are interesting because we
can infer to the properties of the scattering potential from the distribution
of the scattering angle. This approach is heavily used in today’s particle
accelerators for the study of fundamental interactions between elementary
particles.

First we will discuss scattering of small hard spheres of radius r; by

'We refer the reader to [40], chapter 4.

272 CHAPTER 5. PLANAR MOTION

100000

10000

1000 '

100 ’

1 1 1 1 1
1 10 100 1000 10000

a3

Figure 5.6: Kepler’s third law of planetary motion for GM = 10. The points are
the measurements taken from table p.1. The solid line is the known analytic solution

(6.10).

other hard spheres or radius R,. The interaction potentialf is given by

0 r>Ro+m

o0 T<R2—|—T1 (515)

V(r) = {

where r is the distance between the center of r; from the center of R,.
Assume that the particles in the beam do not interact with each other
and that there is only one collision per scattering. Let J be the intensity
of the beamf] and A its cross sectional area. Assume that the target has
n particles per unit area. The cross sectional area of the interaction is
o = m(r + Ry)* where r; and R, are the radii of the scattered particles
and targets respectively (see figure (5.§)): All the spheres of the beam
which lie outside this area are not scattered by the particular target. The

"The so called hard core potential.
*The number of particles crossing a surface perpendicular to the beam per unit time
and unit area.

5.4. SCATTERING 273

1 T T T T T T T T

0.8 r

0.6

04 r

> 02}
0t

-0.2

0.4 |

_0.6 1 1 1 1 1 1 1 1
-0.8-0.6-0.4-0.2 0 02040608 1

X

Figure 5.7: The spiral orbit of a particle moving under the influence of a central
force F' = —k/r37.

total interaction cross section is
Y =nAo, (5.16)

where nA is the total number of target spheres which lie within the beam.
On the average, the scattering rate is

N = JX = JnAc. (5.17)

The above equation is the definition of the total scattering cross section
o of the interaction. The differential cross section o(f) is defined by the
relation

dN = JnAc(9)dS, (5.18)

where dN is the number of particles per unit time scattered within the
solid angle df). The total cross section is

Otot = /90(9) dQ) = /0(9) sin 6 dfd¢ = 2%/0(9) sin 6 df . (5.19)

274 CHAPTER 5. PLANAR MOTION

%

R, ‘

-
!

Figure 5.8: Scattering of hard spheres. The scattering angle is . The cross sectional
area o is shown to the right.

-
!

" @ -

In the last relation we used the cylindrical symmetry of the interaction
with respect to the axis of the collision. Therefore

1 dN
- nAJ2rsinfdo -’

o(0) (5.20)
This relation can be used in experiments for the measurement of the
differential cross section by measuring the rate of detection of particles
within the space contained in between two cones defined by the angles
6 and 0 + df. This is the relation that we will use in the numerical
calculation of o(6).

Generally, in order to calculate the differential cross section we shoot
a particle at a target as shown in figure 5.9. The scattering angle 6
depends on the impact parameter b. The part of the beam crossing the
ring of radius b(f), thickness db and area 27bdb is scattered in angles
between ¢ and 0 + df. Since there is only one particle at the target we
have that nA = 1. The number of particles per unit time crossing the
ring is J27b db, therefore

27b(0) db = —270(6) sin 0 db (5.21)

(the — sign is because as b increases, ¢ decreases). From the potential we

5.4. SCATTERING 275

do —

Figure 5.9: Beam particles passing through the ring 2mwbdb are scattered within the
solid angle dQ} = 2wsind df.

can calculate b(f) and from b(f) we can calculate o(#). Conversely, if we
measure o(f), we can calculate b(6).

5.4.1 Rutherford Scattering

The scattering of a charged particle with charge ¢ (“electron”) in a Coulomb
potential of a much heavier charge) (“nucleus”) is called Rutherford
scattering. In this case, the interaction potential is given by

1 Q
V(r) = — 5.22
") = =t (5.22)
which accelerates the particle with acceleration
a=-99 T _,T (5.23)

dmegm r? r

The energy of the particle is E = 3mv? and the magnitude of its angular
momentum is [= mvb, where v = |U|. The dependence of the impact
parameter on the scattering angle is [40Q]

b(0) = % Cotg. (5.24)

276 CHAPTER 5. PLANAR MOTION

Using equation (5.21) we obtain

21 0
o(f) = & sin 2

T 5 (5.25)

Consider the scattering trajectories. The results for same charges are

40 T T T T - T T T

l | _
30 | |
20 |]

10 | N :

-20 -15 -10 -5 0 5 10 15 20

Figure 5.10: Rutherford scattering trajectories. We set k1 = 22— = 1 (see code in

4dmegm

the file rk2_cb.cpp) and b = 0.08, 0.015, 0.020, 0.035, 0.080, 0.120, 0.200, 0.240, 0.320,
0.450, 0.600, 1.500. The initial position of the particle is at 2(0) = —50 and its initial
velocity is v = 3 in the x direction. The number of integration steps is 1000, the initial
time is 0 and the final time is 30.

shown in figure . A similar figure is obtained in the case of opposite
charges. In the latter case we have to take special care for small impact
parameters b < 0.2 where the scattering angle is ~ 1. A large number
of integration steps is needed in order to obtain the desired accuracy. A
useful monitor of the accuracy of the calculation is the measurement of
the energy of the particle which should be conserved. The results are
shown in table . We will now describe a method for calculating the
cross section by using equation (5.20). Alternatively we could have used

5.4. SCATTERING 277

b 0, 0, AE/E Nt

0.008 | 2.9975 | 2.9978 | 2.810~7 | 5000
0.020 | 2.7846 | 2.7854 | 2.7107° | 5000
0.030 | 2.6131 | 2.6142 | 2.5107° | 5000
0.043 | 2.4016 | 2.4031 | 2.310~° | 5000
0.056 | 2.2061 | 2.2079 | 2.010~? | 5000
0.070 | 2.0152 | 2.0172 | 1.710~° | 5000
0.089 | 1.7887 | 1.7909 | 1.410=% | 5000
0.110 | 1.5786 | 1.5808 | 1.010~° | 5000
0.130 | 1.4122 | 1.4144 | 0.8107° | 5000
0.160 | 1.2119 | 1.2140 | 0.5107° | 5000
0.200 | 1.0123 | 1.0142 | 0.310~° | 5000
0.260 | 0.8061 | 0.8077 | 0.110=2 | 5000
0.360 | 0.5975 | 0.5987 | 2.910~'* | 5000
0.560 | 0.3909 | 0.3917 | 0.310~ | 5000
1.160 | 0.1905 | 0.1910 | 5.310~* | 5000

Table 5.2: Scattering angles of Rutherford scattering. We set k1 = ;22— =1 (see file

4meg
rk2_cb.cpp) and study the resulting trajectories for the values of b shown in column

1. 8, is the numerically calculated scattering angle and 6, is the one calculated from
equation (5.24). The ratio AE/FE shows the change in the particle’s energy due to
numerical errors. The last column is the number of integration steps. The particle’s
initial position is at x(0) = —50 and initial velocity ¥ = 3.

equation () and perform a numerical calculation of the derivatives.
This is left as an exercise for the reader. Our calculation is more like
an experiment. We place a “detector” that “detects” particles scattered
within angles 6 and 6+4d6. For this reason we split the interval [0, 7] in N,
bins so that 60 = 7/N,. We perform “scattering experiments” by varying
b € [b, bys] with step 0b. Due to the symmetry of the problem we fix ¢ to
be a constant, therefore a given ¢ corresponds to a cone with an opening
angle 6 and an apex at the center of scattering. For given b we measure
the scattering angle ¢ and record the number of particles per unit time
ON o< bdb. The latter is proportional to the area of the ring of radius
b. All we need now is the beam intensity J which is the total number
of particles per unit time J x), bdb (note than in the ratio N /J the
proportionality constant and ¢b cancel) and the solid angle 27 sin(f) 66.

278 CHAPTER 5. PLANAR MOTION
b 0, 0, AE/E STEPS
0.020 | 2.793 | 2.785 | 0.02 1 000 000
0.030 | 2.620 | 2.614 | 8.21073 300000
0.043 | 2.405 | 2.403 | 7.21074 150000
0.070 | 2.019 | 2.017 | 3.2107" 150 000
0.089 | 1.793 1.791 | 8.2107" 60 000
0.110 | 1.583 1.581 1.210° 30000
0.130 | 1.417 | 1.414 [9.410°7 | 20000
0.160 | 1.216 | 1.214 | 6.0107° 5000
0.200 | 1.016 1.014 | 4.110° 5000
0.260 | 0.8093 | 0.8077 | 2.21077 5000
0.360 | 0.6000 | 0.5987 | 7.610~° 5000
0.560 | 0.3926 | 0.3917 | 1.210~10 5000
1.160 | 0.1913 | 0.1910 | 2.910°13 5000

Table 5.3: Rutherford scattering of opposite charges with 4:27” = —1. The table is

similar to table . We observe the numerical difficulty for small impact parameters.

Finally we can easily use equation () in order to calculate the total
cross section o;,,. The program that performs this calculation is in the file
scatter.cpp and it is a simple modification of the program in rk2. cpp:

/1
//Program that computes scattering cross—section of a central
//force on the plane. The user should first check that the

// parameters used, lead to a free state in the end.

[/l ** X20 is the impact parameter b **

//A 4 ODE system is solved using Runge—Kutta Method

//User must supply derivatives

//dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)
//dx3/dt=f3(t,x1,x2,x3,x4) dx4&/dt=f4(t,x1,x2,x3,x4)

//as real(8) functions
//Output is written in
/1
#include
#include
#include
#include
#include

file scatter.dat

{iostream >
<fstream >
<cstdlib >
<{string >
<cmath>

5.4. SCATTERING

100 ¢
10 ¢
1+
@ +
@} L
0.1}
0.01

0.001
0

Figure 5.11:

279

is the function (5.25) for a = 1, v = 3. We set 5
is £(0) = —50 and its initial velocity is ¥ = 3%. We used 5000 integration steps, initial
time equal to O and final time equal to 30. The impact parameter varies between 0.02
and 1 with step equal to 0.0002.

using namespace std;

qQ_
om

Differential cross section of the Rutherford scattering. The solid line
1. The particle’s initial position

/]

const int P = 1010000;

double T[P], X1[P], X2[P], Vi[P], V2[P];

double k1 ,k2;

//

double

f1(const double& t , const double& x1, const double& x2,
const double& v1 , const double& v2);

double

f2(const double& t ., const double& x1, const double& x2,
const double& v1 , const double& v2);

double

£f3(const double& t , const double& x1, const double& x2,
const double& v1 , const double& v2);

double

280

a(8)

10

CHAPTER 5. PLANAR MOTION

0.1 ¢

0.01

0.001

10 100 1000

sin(6/2)

Figure 5.12: Differential cross section of the Rutherford scattering like in figure p.11.
The solid line is the function 1/(4 x 3%)x from which we can deduce the functional form

of a().

f4(const
const

double

energy
(const
const

void

RK (const
const
const
const

void

double&
double&

double&
double&

double&
double&
double&
int &

RKSTEP (double& t

double& x1,
double& x3,

const

t , const double& x1, const double& x2,
vl , const double& v2);
t , const double& x1, const double& x2,
vl , const double& v2);
Ti , const double& Tf
X10, const double& X20,
V10, const double& V20,
Nt);
double& x2,
double& x4,

double& dt);

/1

int main() {

5.4. SCATTERING 281

string buf;

double Ti,Tf,X10,X20,V10,V20;

double X20F,dX20; //max impact parameter and step
int Nt,i ;

const int Nbins=20;

int index;

double angle,bins[Nbins],Npart;

const double PI =3.14159265358979324;
const double rad2deg=180.0/PI;

const double dangle =PI/Nbins;

double R,density,dOmega,sigma,sigmatot;

// Input:

cout << “Runge—Kutta Method for 4—ODEs Integration\n”;

cout << “Enter coupling constants:\n”;

cin >> k1 >> k2;getline(cin,buf);

cout << "kil= 7 <K k1 < 7 k2= 7 < k2 << endl;

cout << "Enter Nt,Ti,Tf,X10,X20,V10,V20:\n”;

cin >> Nt >> Ti >> Tf>> X10 >> X20 >> V10 >> V20;
getline(cin,buf);

cout <K “Enter final impact parameter X20F and step dX20:\n”;
cin >> X20F >> dX20;

cout << "Nt = 7 < Nt < endl;
cout < ”Time: Initial Ti = 7 < Ti

<L 7 Final Tf= "~ KL Tf << endl;
cout << 7 X1(Ti)= ” <L X10

<L 7 X2(Ti)=" <K X20 << endl;
cout < 7 VI(Ti)= " < V10

<L 7 V2(Ti)=" <K V20 << endl;
cout <L ”Impact par X20F =7 << X20F

L 7 dxX20 =7 << dX20 <L endl;

ofstream myfile(”’scatter.dat”);
myfile.precision(17);
for (i=0;i<Nbins;i++) bins[i] = 0.0;
// Calculate :
Npart = 0.0;
X20 = X20 + dX20/2.0; //starts in middle of first interval
while(X20 < X20F){
RK(Ti,Tf,X10,X20,V10,V20,Nt);
// Take absolute value due to symmetry:
angle = abs(atan2(V2[Nt—1],V1[Nt—1]));
// Output: The final angle. Check if almost constant
myfile < "@ 7 < X20 < 7 7 KL angle
<L 77 KL abs(atan2(V2[Nt—51],Vi[Nt—51]))
< 7 7 < k1/(V10*V10)/tan(angle/2.0) << endl;

282 CHAPTER 5. PLANAR MOTION

// Update histogram:
index = int(angle/dangle);
//Number of incoming particles per unit time
//is proportional to radius of ring
//of radius X20, the impact parameter:
bins[index] += X20 ; // db is cancelled from density
Npart += X20 ; // <— i.e. from here
X20 += dX20;
} //while(X20 < X20F)
//Print scattering cross section:

R = X20; //beam radius
density = Npart/(PI*R*R); //beam flux density]
sigmatot = 0.0; // total cross section
for (i=0;i<Nbins;i++){
angle = (i+0.5)*dangle;
dOmega = 2.0*PI*sin(angle)*dangle; //d(Solid Angle)
sigma = bins[i]/(density*dOmega);

if (sigma>0.0)
myfile < 7ds= 7 << angle
< << angle*rad2deg
<K << sigma << endl;
sigmatot += sigma*dOmega;
}//for(i=0;i<Nbins;i++)

myfile << 7sigmatot= 7 << sigmatot << endl;
myfile.close();
} //main ()

The results are recorded in the file scatter.dat. An example session

that reproduces figures and is

> g++ scatter.cpp rk2_cb.cpp —o scatter

> ./scatter

Runge—Kutta Method for 4—0DEs Integration

Enter coupling constants:

1.0 0.0

ki= 1 k2= 0

Enter Nt,Ti,Tf,X10,X20,V10,V20:

5000 0 30 —50 0.02 3 O

Enter final impact parameter X20F and step dX20:

1 0.0002

Nt = 5000

Time: Initial Ti = 0 Final Tf= 30
X1(Ti)= —50 X2(Ti)=0.02
Vi(Ti)= 3 Vv2(Ti)=0

5.4. SCATTERING 283

‘Impact par X20F =1 d4X20 =0.0002

The results can be plotted with the gnuplot commands:

gnuplot> set log
gnuplot> plot [:1000] "<grep ds= scatter.dat” \
u ((sin($2/2))**(—4)):($4) notit,\
(1./(4.%3.%*4))*x notit
gnuplot> unset log
gnuplot> set log y
gnuplot> plot [:] "<grep ds= scatter.dat” u 2:4 notit, \
(1./C4.%3.%*4))*(sin(x/2))**(—4) notit

The results are in a very good agreement with the theoretical ones given
by (5.25). The next step will be to study other central potentials whose
solution is not known analytically.

5.4.2 More Scattering Potentials

Consider scattering from a force field

1 r
F=f(r), f(r):{(f_a_g :iz : (5.26)

This is a very simple classical model of the scattering of a positron e
by the hydrogen atom. The positron has positive charge +e and the
hydrogen atom consists of a positively charged proton with charge +e
in an electron cloud of opposite charge —e. We set the scales so that
me+ = 1 and e?/4rey = 1. We will perform a numerical calculation of
b(0), o(0) and oy.
The potential energy is given by
2
fry= -0 Sy =t D2 (5.27)

dr r 2a2 2a

where V(r) = 0 for r > a. The program containing the calculation of the
acceleration caused by this force can be found in the file rk_hy. cpp:

/]
// The acceleration functions f3,f4(t,x1,x2,v1,v2) provided

284 CHAPTER 5. PLANAR MOTION

//by the user
//
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
extern double k1,k2;
/]
//Motion in hydrogen atom + positron:
//f(r) = 1/r*2—1/k123
//ax= f(r)*x1/r ay= f(r)*x2/r
double
£3(const double& t , const double& x1, const double& x2,
const double& vi, const double& v2){

double r2,r,fr;

r2=x1*x1+x2*x2;

r =sqrt(r2);

if(r <= k1 && r2 > 0.0)

fr = 1.0/r2—r/(k1*k1*k1);
else
fr = 0.0;

if(fr > 0.0 & r > 0.0)

return fr*x1/r; // dx3/dt=dvl/dt=al
else

return 0.0;

}
/]
double
f4(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2) {
double r2,r, fr;
r2=x1*x1+x2%*x2;
r =sqrt(r2);
if(r <= k1 && r2 > 0.0)
fr = 1.0/r2—r/(k1*k1*k1);
else
fr = 0.0;

if(fr > 0.0 & r > 0.0)
return fr*x2/r; // dx4/dt=dv2/dt=a2
else

5.5. MORE PARTICLES 285

return 0.0;

}
//
double
energy
(const double& t , const double& x1, const double& x2,
const double& v1, const double& v2) {
double r,Vr;
r=sqrt(x1*x1+x2*x2);
if(r <= k1 & r > 0.0)
Vr = 1/r + 0.5*r*r/(k1*k1*k1) — 1.5 / ki;
else
Vr = 0.0;
return 0.5*(vi*vi+v2*v2) + Vr;

The results are shown in figures 5.13-5.14. We find that ¢,y = ma?
(see problem 5.[1()).

Another interesting dynamical field is given by the Yukawa potential.
This is a phenomenological model of nuclear interactions:

e—r/a

V(r) =k (5.28)

r

This field can also be used as a model of the effective interaction of
electrons in metals (Thomas—Fermi) or as the Debye potential in a classic
plasma. The resulting force is

- —r/a r
Fir)=f(r)i. J0)=k=g (14 7) (5.29)

r2

The program of the resulting acceleration can be found in the file rk2_yu. cpp.

The results are shown in figures @—

5.5 More Particles

In this section we will generalize the discussion of the previous para-
graphs in the case of a dynamical system with more degrees of freedom.
The number of dynamical equations that need to be solved depends on
the number of degrees of freedom and we have to write a program that

286 CHAPTER 5. PLANAR MOTION

0

0O 01 02 03 04 05 06 07 08 09 1

b

Figure 5.13: The impact parameter b(f) for the potential given by equation (5.27)
for different values of the initial velocity v. We set ¢ = 1, 2(0) = —5 and made 4000
integration steps from ¢; = 0 to ¢y = 40.

implements the 4th order Runge—Kutta method for an arbitrary number
of equations NEQ. We will explain how to allocate memory dynamically, in
which case the necessary memory storage space, which depends on NEQ,
is allocated at the time of running the program and not at compilation
time.

Until now, memory has been allocated statically. This means that
arrays have sizes which are known at compile time. For example, in
the program rk2.cpp the integer parameter P had a given value which
determined the size of all arrays using the declarations:

const int P = 1010000;
double T[P], X1[P], X2[P], Vi[P], V2[P];

Changing P after compilation is impossible and if this becomes necessary
we have to edit the file, change the value of P and recompile. Dynamical
memory allocation allows us to read in Nt and NEQ at execution time and

5.5. MORE PARTICLES 287

100
2.0
T —
| 10
I 0.5]
0% 0.25
| 0.125
c 1}]
©
01}]
001 b . . T

0 0.5 1 15 2 2.5 3 3.5

Figure 5.14: The function o(6) for the potential given by equation (5.27) for different
values of the initial velocity v. We set a =1, 2(0) = —5 and the integration is performed
by making 4000 steps from t; = 0 to ¢y = 40.

then ask from the operating system to allocate the necessary memory.
The needed memory can be asked for at execution time by using the new
operator. Here is an example:

double *T; //Declare 1-Dim arrays as pointers

double **X; //Declare 2—Dim arrays as pointers to pointers
int NEQ,Nt; //Variables of array sizes

/1
finit (NEQ); //function that sets NEQ at run time
cin >> Nt; //read Nt at run time

/1
// allocates 1-Dim array of Nt doubles

T = new double [Nt];

// allocates 1-Dim array of Nt pointers to doubles

X = new double*[Nt];

//for each i, allocate an array of NEQ doubles at X[i]:
for(int i=0;i<Nt;i++) X[i] = new double[NEQ];

288 CHAPTER 5. PLANAR MOTION

10 . : . . .
yuv=4.0
\ cbhv=4.0
1t yuv=15.0]
‘- cb v=15.0
0.1¢
D
0.01
16-04 L 1 ! | .

Figure 5.15: The function b(f) for the Yukawa scattering for several values of the
initial velocity v. We set a = 1, k = 1, 2(0) = —50 and the integration is performed with
5000 steps from #; = 0 to t; = 30. The lines marked as cb are equation (5.24) of the
Rutherford scattering.

//return allocated memory back to the system:
delete [] T; // deallocate an array
//for each i, deallocate the array of doubles X[i][NEQ]
for(int i=0;i<NEQ;i++) delete [] X[i];
//and then deallocate the array of pointers to doubles X[Nt]:
delete[] X ;
void finit(int& NEQ){//function that sets value of NEQ
NEQ = 4;
}

In this program, we should remember the fact that in C++, the name
T of an array T[Nt] is a pointer to T[0], which is denoted by &T[0]. This
is the address of the first element of the array in the memory. Therefore,

5.5. MORE PARTICLES 289

10 ¢

0.01 |
0.001 .
1e-04 i

1le-05 E

1e_06 I 1 1 1 1 1

Figure 5.16: The function b(6) for the Yukawa scattering for several values of the
range a of the force. We set v = 4.0, k = 1, (0) = —50 and the integration is performed
with 5000 steps from ¢; = 0 to ¢ty = 30.

if the array is double T[Nt], then T is a pointer to a double: double *T.
Then T+i is a pointer to the address of the (i+1)-th element of the array
T[i] and

T+i = &T[i]

as well as

T[i] = *(T+1i)

We can use pointers with the same notation as we do with arrays: If we
declare a pointer to a double *T1, and assign T1=T, then T1[0], T1[1],

are the same as T[0], T[1], For example, T1[0] = 2.0
assigns also T[0] and vice-versa. Conversely, we can declare a pointer to
a double *T, as we do in our program, and make it point to a region in
the memory where we have reserved space for Nt doubles. This is what

290 CHAPTER 5. PLANAR MOTION

the operator new does. It asks for the memory for Nt doubles and returns
a pointer to it. Then we assign this pointer to T:

double *T;
T = new double[Nt];

Then we can use T[0], T[1], ..., T[Nt-1] as we do with ordinary
arrays.

Two dimensional arrays are slightly trickier: For a two dimensional
array, double X[Nt] [NEQ], X is a pointer to the value X[0] [0], which is
&X[0] [0]. Then X[i] is a pointer to the one dimensional array X [i] [NEQ],
therefore X is a pointer to a pointer of a double!

X[i][jeq]l is: double
X[i] is: double *
X is: double **

Conversely, we can declare a double *x*X, and use the operator new to
return a pointer to an array of Nt pointers to doubles, and then for each
element of the array, use new to return a pointer to NEQ doubles:

double **X

X = new double*[Nt];

X[0] = new double[NEQ];

X[1] = new double[NEQ];

X[Nt—1] = new double[NEQ];

Then we can use the notation T[i] [jeq], i= 0, 1, ..., Nt-1 and jeg=
0, 1, ..., NEQ-1, as we do with statically defined arrays.

The memory that we ask to be allocated dynamically is a finite re-
source that can easily be exhausted (heard of memory leaks?). Therefore,
we should be careful to return unused memory to the system, so that it
can be recycled. This should happen especially within functions that we
call many times, which allocate large memory dynamically. The operator
delete can be used to deallocate memory that has been allocated with the
operator new. For one dimensional arrays, this is particularly simple:

‘ double *T;

5.5. MORE PARTICLES 291

T = new double[Nt];
(use T[i])
delete [] T;

(cannot use T after delete)

For “two dimensional arrays” that have been allocated as we described
above, first we have to delete the arrays pointed by X[i] for i=0,
Nt-1, and then the arrays of pointers pointed by X:

3

X = new double*[Nt];
for(int i=0;i<Nt;i++) X[i] = new double[NEQ];
use X[i][jeql .
for(int i=0;i<NEQ;i++) delete [] X[i]; //delete all arrays X[i]
delete[] X ; // delete array of pointers

The main program will be written in the file rkA.cpp, whereas the
force-dependent part of the code will be written in files with names of
the form rkA_XXX.cpp. In the latter, the user must program a function
f(t,X,dXdt) which takes as input the time t and the values of the func-
tions X [NEQ] and outputs the values of their derivatives dXdt [NEQ] at time
t. The function finit (NEQ) sets the number of functions in f and it is
called once during the initialization phase of the program.

The program in the file rkA.cpp is listed below:

/1
//Program to solve an ODE system using the

//4th order Runge—Kutta Method

//NEQ: Number of equations

// User supplies two functions:

//£(t,x,xdot): with double t,x[NEQ],xdot[NEQ] which

// given the time t and current values of functions x[NEQ]
//it returns the values of derivatives: xdot = dx/dt
//The values of two coupling constants k1,k2 may be used
//in f which are read in the main program

// finit (NEQ) : sets the value of NEQ

/1

// User Interface:

// double k1,k2: coupling constants in global scope
//Nt, Ti, Tf: Nt—1 integration steps, initial/final time

292 CHAPTER 5. PLANAR MOTION

// double XO[NEQ]: initial conditions
// Output:
//tkA.dat with Nt lines consisting of: T[Nt] .X[Nt][NEQ]
/]
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
/1]
double *T; // T[Nt] stores the values of times
double **X; // X[Nt][NEQ] stores the values of functions
double k1,k2;
/]
void RK(const double& Ti, const double& Tf, double* X0,
const int & Nt, const int & NEQ);
void RKSTEP(double& t |, double* x ,

const double& dt, const int & NEQ);
// The following functions are defined in rkA_XX.cpp:
void finit(int & NEQ); //Sets number of equations
// Derivative and energy functions:

void f (const double& t, double* X,double* dXdt);
double energy(const double& t, double* X);
/]

int main() {
string buf;
int NEQ,Nt;
double* XO0;
double Ti,Tf;
// Get number of equations and allocate memory for XO:
finit (NEQ);
X0 = new double [NEQ];
//Input:
cout << "Runge—Kutta Method for ODE Integration.\n”;
cout << "NEQ= ” << NEQ <K endl;
cout <K ”Enter coupling constants:\n”;
cin >> k1 >> k2;getline(cin,buf);
cout <K "kil= 7 <K k1 < 7 k2= 7 <K k2 < endl;
cout << "Enter Nt, Ti, Tf, X0:\n”;

cin >> NtO>>Ti>>TE ;
for(int i=0;i<NEQ;i++) cin >> X0[i];getline(cin,buf);
cout << "Nt = 7 < Nt << endl;

cout <K "Time: Initial Ti =7 <K Ti <K 7 7”
< ”Final Tf=” < Tf < endl;

5.5. MORE PARTICLES 293

cout < 7 X0 =7;
for(int i=0;i<NEQ;i++) cout << X0[i] < 7 7
cout <K endl;
// Allocate memory for data arrays:
T = new double [Nt];
X = new double*[Nt];
for(int i=0;i<Nt;i++) X[i] = new double[NEQ];
//The Calculation :
RK(Ti,Tf,X0,Nt,NEQ);
// Output:
ofstream myfile(”rkA.dat”);
myfile.precision(16);
for(int i=0;i<Nt;i++){
myfile <L T[i] COR
for(int jeq=0;jeq<NEQ; jeq++)
myfile << X[il[jeq] << 7 7;
myfile << energy(T[i],.X[i]) << '\n’;
}
myfile.close();
/]
// Cleaning up dynamic memory: delete[] each array
// created with the new operator (Not necessary in this
//program, it is done at the end of the program anyway)
delete[] XO0;
delete[] T ;
for(int i=0;i<NEQ;i++) delete [] X[i];
delete[] X ;
} //main ()
!/
// Driver of the RKSTEP routine
//
void RK(const double& Ti, const double& Tf, double* X0,
const int & Nt, const int & NEQ) {

double dt;

double TS;

double* XS;

XS = new double[NEQ];

// Initialize variables:

dt = (Tf-Ti) /(Nt—1);

T [0] = Ti;

for(int ieq=0;ieq<NEQ;ieq++) X[0][ieq]=X0[ieq];
TS = Ti;

for(int ieq=0;ieq<NEQ;ieq++) XS [ieq]=XO0[ieq];
//Make RK steps: The arguments of RKSTEP are

294 CHAPTER 5. PLANAR MOTION

// replaced with the new ones
for(int i=1;i<Nt;i++){
RKSTEP (TS .XS.,dt,NEQ) ;
T[i] = TS;
for(int ieq=0;ieq<NEQ;ieq++) X[i][ieq] = XS[ieq];
}
// Clean up memory:
delete [] XS;
}//RK(O)

/1

// Function RKSTEP(t ,X, dt)
//Runge—Kutta Integration routine of ODE

/1

void RKSTEP(double& t, double* x, const double& dt ,
const int & NEQ) {
double tt;
double *k1, *k2, *k3, *k4, *xx;
double h,h2,h6;

k1 = new double[NEQ];
k2 = new double[NEQ];
k3 = new double[NEQ];
k4 = new double[NEQ];
xx = new double[NEQ];

h =dt; // h =dt, integration step

h2=0.5*h; // h2=h/2

h6=h/6.0; // h6=h/6

//1st step:

f(t ,x ,k1);

//2nd step:

for(int ieq=0;ieq<NEQ;ieq++)
xx[ieq] = x[ieq] + h2*ki[ieq];

tt =t+h2;

f(tt,xx,k2);

//3rd step:

for(int ieq=0;ieq<NEQ;ieq++)
xx[ieq] = x[ieq] + h2*k2[ieq];

tt =t+h2;

f(tt,xx,k3);

//4th step:

for(int ieq=0;ieq<NEQ;ieq++)
xx[ieq] = x[ieq] + h *k3[ieql;

tt=t+h ;

f(tt,xx,k4);

5.5. MORE PARTICLES 295

// Update:
t += h;
for(int ieq=0;ieq<NEQ;ieq++)
x[ieq] += h6*(k1[ieq]+2.0*(k2[ieq]+k3[ieq])+k4[ieq]);
//Clean up memory:
delete[] ki;
delete[] k2;
delete[] k3;
delete[] k4;
delete[] =xx;
} //RKSTEP()

Figure 5.17: Three particles of equal mass interact via their mutual gravitational
attraction. The problem is solved numerically using the program in the files rkA.cpp,
rkA_3pcb.cpp. The same program can be used in order to study the motion of three
equal charges under the influence of their attractive or repulsive electrostatic force.

Consider three particles of equal mass exerting a force of gravitational
attraction on each otherf| like the ones shown in figure 5.17. The forces
exerting on each other are given by

= k
Ej - %F;j7 Z?] = 17 2737 (530)

ij

“The same program can be used for three equal charges exerting an electrostatic
force on each other, which can be either attractive or repulsive.

296 CHAPTER 5. PLANAR MOTION

where k; = —Gm and the equations of motion become (i = 1,2, 3)

3

dt dt

dt dt

de‘i — dvm :]{31 Z

di d’Ui 3
B A

j=lg#i Y

ZEZ‘—ZL‘]‘
3

reo.
j=lj#i Y

Yi — Y5
7,3

: (5.31)

where 17, = (z; — ;) + (y;: — y;)>. The total energy of the system is

3

1
Efm=g(vi+v)+),

b,j=1,j<i

ki

rij

(5.32)

The relations shown above are programmed in the file rkA_3pcb.cpp

listed below:

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

/]
extern double ki1,k2;

/1

// Sets number of equations:
void finit(int& NEQ) {

NEQ = 12;
}
//
// Three particles of the same
//mass on the plane interacting
// via Coulombic force
/]
void f(const double& t, double* X, double*

double x11,x12,x21,x22,x31,x32;

double vi11,vi12,6v21,v22,v31,v32;

double ri12,r13,r23;

/]
x11 = X[0];x21 = X[4];x31 = X[8];
x12 = X[1];x22 = X[5];x32 = X[9];

daxdt) {

5.5. MORE PARTICLES

vil = X[2];v21
vi2 = X[3];v22
/]

X[6];v31
X[7];v32

X[10];
X[11];

r12 = pow((x11—x21)*(x11—x21)+(x12—x22) *(x12-x22),—-3.0/2.0) ;

pow ((x11—x31) *(x11—x31)+(x12—x32) *(x12-x32) ,—3.0/2.0) ;

all=dv11/dt
al2=dv12/dt

a21=dv21/dt
a22=dv22/dt

ri3 =

r23 = pow((x21—x31)*(x21-x31) +(x22-x32) *(x22—x32) ,—-3.0/2.0) ;
/]

dXdt[0] = vi1;

dXxdt[1] = v12;

dXdt[2] = k1*(x11—x21)*r12+k1*(x11-—x31)*r13;
dXdt[3] = k1*(x12—x22)*r12+k1*(x12—x32)*r13;
/]

dXdt[4] = v21;

dXdt[5] = v22;

dXdt[6] = k1*(x21—x11)*r12+k1*(x21—x31)*r23;
dXdt[7] = k1*(x22—x12)*ri12+kl1*(x22—x32)*r23;
/]

dXxdt[8] = v31;

dXdt[9] = v32;

dXdt[10] = k1*(x31—x11)*r13+k1*(x31—x21)*r23;

dXdt[11] = k1*(x32—x12)*r13+k1*(x32-x22)*r23;
}
//
double energy(const double& t, double* X){

double x11,x12,x21,x22,x31,x32;

double vi11,v12,v21,v22,v31,v32;

double r12,r13,r23;

double e;

/]

x11 = X[0];x21 = X[4];x31 = X[8];
x12 = X[1];x22 = X[b5];x32 = X[9];
vil = X[2];v21 = X[6];v31 = X[10];
vi2 = X[3];v22 = X[7];v32 = X[11];
//

a31l=dv31/dt
a32=dv32/dt

r12 = pow((x11—x21)*(x11—x21)+(x12—x22) *(x12-x22),—-0.5);
r13 = pow((x11—x31)*(x11—x31)+(x12—x32) *(x12-x32),-0.5);
r23 = pow((x21—x31)*(x21—x31)+(x22—x32) *(x22-x32),-0.5);

/1

e = 0.5*%(v11*v114+v12*v124+v21*v214+v22*v224+v31*v31+v32*v32);

e += k1*(r12+r13+r23);
return e;

297

In order to run the program and see the results, look at the commands
in the shell script in the file rkA_3pcb.csh. In order to run the script use

298 CHAPTER 5. PLANAR MOTION

the command

> rkA_3pcb.csh —0.5 4000 1.5 -1 0.1 1 0 1 -0.1 -1 0 0.05 1 0 —1

which will run the program setting k; = —0.5, 7, (0) = —2+0.1g, 9,(0) = z,
7(0) = & — 0.19, 55(0) = —&, 73(0) = 0.05% + g, 73(0) = —g, Nt= 4000 and
t; = 1.5.

5.6.

PROBLEMS 299

5.6 Problems

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Reproduce the results shown in figures and 5.4. Compare your
results to the known analytic solution.

Write a program for the force on a charged particle in a constant
magnetic field B = Bk and compute its trajectory for #(0) = vo,& +
voyy. Set x(0) = 1,y(0) = 0,vp, = 0 and calculate the resulting
radius of the trajectory. Plot the relation between the radius and
voz. Compare your results to the known analytic solution. (assume
non relativistic motion)

Consider the anisotropic harmonic oscillator a, = —w?z, a, = —w3y.
Construct the Lissajous curves by setting 2(0) = 0,y(0) = 1,v,(0) =
L, (0) =0, t; = 27, w3 =1, w? = 1,2,4,9,16,.... What happens
when w? # nw3?

Reproduce the results displayed in table .1 and figures b.5 and p.6.
Plot Ina vs InT and calculate the slope of the resulting straight line
by using the linear least squares method. Is it what you expect?
Calculate the intercept and compare your result with the expected
one.

Calculate the angular momentum with respect to the center of the
force at each integration step of the planetary motion and check
whether it is conserved. Show analytically that conservation of
angular momentum implies that the position vector sweeps areas at
constant rate.

Calculate the escape velocity of a planet v, for GM = 10.0, y(0) = 0.0,
o = z(0) = 1 using the following steps: First show that v3 =
—GM(1/a)+v2. Then set v,(0) =0, v,(0) = vo. Vary v,(0) = vy and
measure the resulting semi-major axis a. Determine the intercept
of the resulting straight line in order to calculate v..

Repeat the previous problem for z, = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4.0. From the v, = f(1/x,) plot confirm the relation (5.14).

Check that for the bound trajectory of a planet with GM = 10.0,
z(0) = 1, y(0) = 0.0, v,(0) = 0, v,(0) = 4 you obtain that F, P +

300

5.9

5.10

5.11

CHAPTER 5. PLANAR MOTION

FyP = 2a for each point P of the trajectory. The point [} is the
center of the force. After determining the semi-major axis a nu-
merically, the point F, will be taken symmetric to F; with respect
to the center of the ellipse.

Consider the planetary motion studied in the previous problem.
Apply a momentary push in the tangential direction after the planet
has completed 1/4 of its elliptical orbit. How stable is the particle
trajectory (i.e. what is the dependence of the trajectory on the
magnitude and the duration of the push?)? Repeat the problem
when the push is in the vertical direction.

Consider the scattering potential of the positron-hydrogen system
given by equation (). Plot the functions f(r) and V(r) for
different values of a. Calculate the total cross section 0y, numerically
and show that it is equal to ma?.

Consider the Morse potential of diatomic molecules:
V(r) = D (exp(—2ar) — 2exp(—ar)) (5.33)

where D, > 0. Compute the solutions of the problem numerically
in one dimension and compare them to the known analytic solutions
when F < 0:

x(t)=$ln{D_ D(D_|E|>’S;T(O‘”2’E‘/m+c>,} (5.34)

where the integration constant as a function of the initial position
and energy is given by

D — |E|eo

. (5.35)
D(D —|E])

C =sin~! [

We obtain a periodic motion with an energy dependent period =

(r/a)\/2m/|E|. For E > (0 we obtain
£(t) = 1 In { VD(D + E)cosh(at\/2E/m + C) — D} (5.36)

a |E]

5.6.

5.12

5.13

5.14

5.15

5.16

5.17

PROBLEMS 301

whereas for £ = 0
1 1 Da?
t)==Inq -+ —@+C)*} . 5.37
o) = i {g 4 Pie+ 02 (5.37)
In these equations, the integration constant C' is given by a different
relation and not by equation (5.35). Compute the motion in phase

space (z, ©) and study the transition from open to closed trajectories.

Consider the effective potential term V,;(r) = 12/2mr? (I = |L]) in
the previous problem. Plot the function V. (r) = V(r) + V.ss(r) for
D=20,a=1,m=1,1=1, and of course for r > 0. Determine the
equilibrium position and the ionization energy.

Calculate the solutions z(t), y(t), y(x), r(t) on the plane for £ > 0,
E =0, and £ < 0 numerically. In the £ < 0 case consider the
scattering problem and calculate the functions b(6), o(f) and the
total cross section oy.;.

Consider the potential of the molecular model given by the force
F(r) = f(r) 7 where f(r) = 24(2/r'® — 1/17). Calculate the potential
V(r) and plot the function Vi, (r) = V(r) + V.s¢(r). Determine the
equilibrium position and the ionization energy.

Consider the problem of scattering and calculate b(6), o(#) and oy
numerically. How much do your results depend on the minimum
scattering angle?

Compute the trajectories of a particle under the influence of a force
F = —k/r3f. Determine appropriate initial conditions that give a
spiral trajectory.

Compute the total cross section oy, for the Rutherford scattering
both analytically and numerically. What happens to your numerical
results as you vary the integration limits?

Write a program that computes the trajectory of a particle that
moves on the plane in the static electric field of N static point
charges.

Solve the three body problem described in the text in the case of
three different electric charges by making the appropriate changes
to the program in the file rkA_3cb.cpp.

302

5.18

5.19

CHAPTER 5. PLANAR MOTION

Two charged particles of equal mass and charge are moving on the
xy plane in a constant magnetic field B = B:. Solve the equations of
motion using a 4th order Runge—Kutta Method. Plot the resulting
trajectories for the initial conditions that you will choose.

Three particles of equal mass m are connected by identical springs.
The springs’ spring constant is equal to £ and their equilibrium
length is equal to [. The particles move without friction on a hori-
zontal plane. Solve the equations of motion of the system numeri-
cally by using a 4th order Runge—Kutta Method. Plot the resulting
trajectories for the initial conditions that you will choose. (Hint:
Look in the files rkA_3hoc.cpp, rkA_3hoc.csh.)

y

Figure 5.18: Two identical particles are attached to thin weightless rods of length
[and they are connected by an ideal weightless spring with spring constant k& and
equilibrium length [. The rods are hinged to the ceiling at points whose distance is [.

(Problem B.R0).

5.20 Two identical particles are attached to thin weightless rods of length

[and they are connected by an ideal weightless spring with spring
constant k£ and equilibrium length /. The rods are hinged to the
ceiling at points whose distance is [(see figure 5.18). Compute
the Lagrangian of the system and the equations of motion for the
degrees of freedom ¢, and ¢,. Solve these equations numerically
by using a 4th order Runge-Kutta method. Plot the positions of

5.6.

5.21

5.22

PROBLEMS 303

the particles in a Cartesian coordinate system and the resulting tra-
jectory. Study the normal modes for small angles #; < 0.1 and
compute the deviation of the solutions from the small oscillation
approximation as the angles become larger. (Hint: Look in the files
rk_cpend.cpp, rk_cpend.csh)

Repeat the previous problem when the hinges of the rods slide
without friction on the x axis.

Repeat problem B.20 by adding a third pendulum to the right at
distance .

304 CHAPTER 5. PLANAR MOTION

Chapter 6

Motion in Space

In this chapter we will study the motion of a particle in space (three
dimensions). We will also discuss the case of the relativistic motion,
which is important if one wants to consider the motion of particles moving
with speeds comparable to the speed of light. This will be an opportunity
to use an adaptive stepsize Runge-Kutta method for the numerical solution
of the equations of motion. We will use the open source code rksuite]]
available at the Netlibf repository. Netlib is an open source, high quality
repository for numerical analysis software. The software it contains is
used by many researchers in their high performance computing programs
and it is a good investment of time to learn how to use it. Most of it
is code written in Fortran and, in order to use it, you should learn how
to link a program written in C++ with functions written in a different
programming language.

The main technical skill that you will develop in this chapter is looking
for solutions to your numerical problems provided by software written
by others. It is important to be able to locate the optimal solution to your
problem, find the relevant functions, read the software’s documentation
carefully and filter out the necessary information in order to call and link
the functions to your program.

'R.W. Brankin, I. Gladwell, and L.F. Shampine, RKSUITE: a suite of Runge-Kutta
codes for the initial value problem for ODEs, Softreport 92-51, Department of Mathe-
matics, Southern Methodist University, Dallas, Texas, U.S.A, 1992.

“www.netlib.org

305

http://www.netlib.org

306 CHAPTER 6. MOTION IN SPACE

6.1 Adaptive Stepsize Control for RK Methods

The three dimensional equation of motion of a particle is an initial value
problem given by the equations (%.6))

dz dv,, (t)

— = Uy = Az\U, Ty Vg, Y, Vy, 2,V

dt dt Yl

dy dv, (t)

5 =V =a y Ly Vg, Yy Vyy 25 Uy

ar Y a Y Y%

dz dv

— =1, = = a,(t,x, v, Y, 0y, 2,0,) . 6.1
a0 dt (Yy vy, 2, 2) 6.1)

For its numerical solution we will use an adaptive stepsize Runge—
Kutta algorithm for increased performance and accuracy. Adaptive step-
size is used in cases where one needs to minimize computational effort
for given accuracy goal. The method frequently changes the time step
during the integration process, so that it is set to be large through smooth
intervals and small when there are abrupt changes in the values of the
functions. This is achieved by exercising error control, either by monitor-
ing a conserved quantity or by computing the same solution using two
different methods. In our case, two Runge-Kutta methods are used, one
of order p and one of order p+ 1, and the difference of the results is used
as an estimate of the truncation error. If the error needs to be reduced,
the step size is reduced and if it is satisfactorily small the step size is
increased. For the details we refer the reader to [33]. Our goal is not to
analyze and understand the details of the algorithm, but to learn how to
find and use appropriate and high quality code written by others.

6.1.1 The rksuite Suite of RK Codes

The link http://www.netlib.org/ode/ reads

1lib rksuite
alg Runge—Kutta
for initial value problem for first order ordinary <>
differential
equations. A suite of codes for solving IVPs in ODEs. A
choice of RK methods, is available. Includes an error
assessment facility and a sophisticated stiffness checker.

http://www.netlib.org/ode/

6.1. ADAPTIVE STEPSIZE CONTROL FOR RK METHODS 307

Template programs and example results provided.
Supersedes RKF45, DDERKF, DO2PAF.
ref RKSUITE, Softreport 92—S1, Dept of Math, SMU, Dallas, ¢
Texas
by R.W. Brankin (NAG), I. Gladwell and L.F. Shampine (SMU)
lang Fortran
prec double

There, we learn that the package provides code for Runge—Kutta methods,
whose source is open and written in the Fortran language. We also learn
that the code is written for double precision variables, which is suitable
for our problem. Last, but not least, we are also happy to learn that it is
written by highly reputable people! We download]| the files rksuite.f,
rksuite.doc, details.doc, templates, readme.

In order to link the subroutines provided by the suite to our pro-
gram we need to read the documentation carefully. In the general case,
documentation is available on the web (html, pdf, ...), bundled files with
names like README and INSTALL, in whole directories with names like
doc/, online help in man and/or info pages and, finally, in good old fash-
ioned printed manuals. Good quality software is also well documented
inside the source code files, something that is true for the software at
hand.

In order to link the suite’s subroutines to our program we need the
following basic information:

e INPUT DATA: This is the necessary information that the program
needs in order to perform the calculation. In our case, the mini-
mal such information is the initial conditions, the integration time
interval and the number of integration steps. The user should also
provide the functions on the right hand side of (6.1). It might also
be necessary to provide information about the desired accuracy goal,
the scale of the problem, the hardware etc.

e OUTPUT DATA: This is the information on how we obtain the
results of the calculation for further analysis. Information whether
the calculation was successful and error free could also be provided.

*For the convenience of the reader, these files can be found bundled in the accom-
panied software in a subdirectory rksuite.

308

CHAPTER 6. MOTION IN SPACE

¢ WORKSPACE: This is information on how we provide the necessary

memory space used in the intermediate calculations. Such space
needs to be provided by the user in programming languages where
dynamical memory allocation is not possible, like in Fortran 77,
and the size of workspace depends on the parameters of the calling
program.

It is easy to install the software. All the necessary code is in one file
rksuite.f. The file rksuite.docf| contains the documentation. There we
read that we need to inform the program about the hardware dependent
accuracy of floating point numbers. We need to set the values of three
variables:

RKSUITE requires three environmental constants OUTCH, MCHEPS,
DWARF. When you use RKSUITE, you may need to know their
values. You can obtain them by calling the subroutine ENVIRN
in the suite:

CALL ENVIRN(OUTCH,MCHPES ,DWARF)

returns values

OUTCH — INTEGER

Standard output channel on the machine being used.

MCHEPS — DOUBLE PRECISION

The unit of roundoff, that is, the largest
positive number such that 1.0DO + MCHEPS = 1.0DO.

DWARF — DOUBLE PRECISION

The smallest positive number on the machine being
used.

3k 3k ok ok sk sk sk sk sk ok ok sk sk sk sk sk sk ok sk sk sk sk ok ok sk sk Installation Details 3k 3k 3k sk sk ok ok ok ok ok sk ok

A1l machine—dependent aspects of the suite have been
isolated in the subroutine ENVIRN in the rksuite.f file.

The variables OUTCH, MCHEPS, DWARF are defined in the subroutine ENVIRN.
They are given generic default values but the programmer is free to

“This is a simple text file which you can read with the command less rksuite.doc
or with emacs.

6.1. ADAPTIVE STEPSIZE CONTROL FOR RK METHODS 309

change them by editing ENVIRN. We should identify the routine in the file
rksuite.f and read the comments in it}

SUBROUTINE ENVIRN(OUTCH,MCHEPS ,DWARF)

The following six statements are to be Commented out
after verification that the machine and installation
dependent quantities are specified correctly.

oNeNeN

WRITE(* ,*) ° Before using RKSUITE, you must verify that the
WRITE(* ,*) ’ machine— and installation —dependent quantities ’
WRITE(* ,*) ° specified in the subroutine ENVIRN are correct, ’
WRITE(* ,*) ° and then Comment these WRITE statements and the
WRITE(* ,*) °> STOP statement out of ENVIRN. ’
STOP

The following values are appropriate to IEEE
arithmetic with the typical standard output channel.

[eNeNe

OUTCH = 6
MCHEPS = 1.11D—16
DWARF = 2.23D—308

All we need to do is to comment out the WRITE and STOP commands since
we will keep the default values of the OUTCH, MCHEPS, DWARF variables:

WRITE(* ,*) * Before using RKSUITE, you must verify that the °’
WRITE(* ,*) ° machine— and installation —dependent quantities
WRITE(* ,*) * specified in the subroutine ENVIRN are correct. ’
WRITE(* ,*) °> and then Comment these WRITE statements and the °’
WRITE(* ,*) * STOP statement out of ENVIRN. ’
STOP

o000 0.

In order to check whether the default values are satisfactory, we can
use the C++ template numeric_limits, which is part of the C++ Standard
Library. In the file numericLimits.cpp, we write a small test programﬁ:

#include <iostream >
#include <limits >
using namespace std;

*These are lines that begin with a C, as this is old fixed format Fortran code.
°The file in the accompanying software, shows you how to compute numeric limits
for several types of variables.

310 CHAPTER 6. MOTION IN SPACE

int main() {
double MCHEPS ,DWARF;

MCHEPS = numeric_limits<double >::epsilon();

DWARF numeric_limits<double >::min O;
cout < "MCHEPS = 7 << MCHEPS/2.0 << endl;
cout << "DWARF = 7 << DWARF << endl;

}

We compile and run the above program as follows:

> g++ numericlLimits.cpp —o n

> ./n
MCHEPS = 1.11022e—16
DWARF = 2.22507e—308

We conclude that our choices are satisfactory.

Next, we need to learn how to use the subroutines in the suite. By
carefully reading rksuite.doc we learn the following: The interface to the
adaptive stepsize Runge—Kutta algorithm is the routine UT (UT = “Usual
Task™). The routine can use a 2nd-3rd (RK23) order Runge-Kutta pair
for error control (METHOD=1), a 4th-5th (RK45) order pair (METHOD=2) or
a 7th-8th (RK78) order pair (METHOD=3). We will set METHOD=2 (RK45).
The routine SETUP must be called before UT for initialization. The user
should provide a function F that calculates the derivatives of the functions
we integrate for, i.e. the right hand side of [6.1.

The fastest way to learn how to use the above routines is “by exam-
ple”. The suite include a templates package which can be unpacked by
executing the commands in the file templates using the sh shell:

> sh templates
tmpll.out
tmplla.f

The file tmplia.f contains the solution of the simple harmonic oscillator
and has many explanatory comments in it. The code is in Fortran,
but it is not so hard to read. You may compile it and run it with the
commands:

6.1. ADAPTIVE STEPSIZE CONTROL FOR RK METHODS 311

> cd rksuite/templates
> gfortran tmplla.f ../rksuite.f —o examplel
> ./examplel

We encourage the reader to study it carefully, run it and test its results.

6.1.2 Interfacing C++ Programs with Fortran

Next, we have to learn how to link the Fortran code in rksuite.f to a
C++ program. There is a lot of relevant information that you can find
with a simple search in the web, we will concentrate on what is relevant
to the program that we need to write. The first thing that we need to
learn is how to call a function written in Fortran from a C++ program. A
simple “Hello World” program can teach us how to do it. Suppose that
a Fortran function/subroutine HELLO() is coded in a file helloF.£90:

SUBROUTINE HELLO ()
PRINT *, ’Hello World!”’

END SUBROUTINE HELLO

Then, we write in the file hello.cpp:

#include <iostream >
using namespace std;
extern "C” void hello_();
int main(){

hello_Q);
}

The first thing that we notice is that we call the function by lowering all
letters in its name: HELLO — hello. In Fortran, lowercase and uppercase
letters are equivalent, and the compiler creates names with lowercase
letters only. Next, we find that we need to append an underscore _ to
the function’s namef: hello — hello_. The Fortran function needs to
be declared in the “"C" language linkage:

'Read your compiler’s manual, there could be options that you can use at compile
time so that you can avoid it. But the advice is to stick with this convention, so that
your code will be portable and ... long lived!

312 CHAPTER 6. MOTION IN SPACE

extern "C” void hello_();

This is something one has to do both for functions written in Fortran, as
well as for functions written in plain old Cfl.
In order to compile and run the code we have to run the commands:

> gfortran —c helloF.£90
> g++ hello.cpp helloF.o —o hello —lgfortran
> ./hello

Hello World!

Compilation is done in two steps: We first need to compile the Fortran
program using the Fortran compilerf gfortran. The flag -c forces the
compiler to perform compilation but not linking. It produces an ob-
ject file, whose extension is .o, helloF.o. These are files which contain
compiled code in non-readable text form, but they are not autonomous
executable programs. The functions that they contain, can be linked to
other compiled programs that call them. In the second step, g++ is called
to compile the C++ source code in hello.cpp and link it to the functions
in helloF.o. The flag -1gfortran is necessary in order to link to the
standard Fortran functions. If you use a different compiler, you should
read its manual in order to find the correct linking options.

Another subtle point that needs to be considered is that, in Fortran,
variables are passed to functions by reference and not by value. Therefore,
we have to pass variables as pointers or as reference to variables. For
example, the following Fortran function

REAL (8) FUNCTION SQUAREMYDOUBLE(X)
REAL(8) x

X = 2.0*%X

*Language linkage encapsulates the set of requirements necessary in order to link
with a function written in another programming language, and it should be done for all
function types, names and variable names. There could be linkage to other program-
ming languages, but only the C and C++ linkage is guaranteed to be available.

’ Available for free download from gcc.gnu.org/fortran/. On debian based Linux
systems, install with sudo apt-get install gfortran.

A Fortran function returns the value stored in a variable with the same name as
the name of the function, here SQUAREMYDOUBLE.

https://gcc.gnu.org/fortran/

6.1. ADAPTIVE STEPSIZE CONTROL FOR RK METHODS 313

SQUAREMYDOUBLE = X*X

END FUNCTION SQUAREMYDOUBLE

must be declared and called as:

extern "C” double squaremydouble_(double& x);

double x,x2;
x2 = squaremydouble_(x);

For example, by modifying the hello.cpp program as

#include <iostream >
using namespace std;
extern "C” void hello_ ()
extern “C” double squaremydouble_(double& x);
int main() {
double x,x2;

hello_(Q);

x = 2.0;

x2 = squaremydouble_(x);

cout < 7x = 7 <L 2.0 < endl;
cout << 72 x =7 K x << endl;
cout << (2 x)*(2 x) = 7 < x2 << endl;

}

we obtain the output:

> gfortran —c helloF.f90;
> g++ hello.cpp helloF.o —o hello —lgfortran
> ./hello
Hello World!
x =2
2 x =4
(2 x)*(2 x) = 16

Notice that the value of x is modified in the calling program.

The final issue that we will consider, it how to pass arrays to Fortran
functions. One dimensional arrays are quite easy to handle. In order to
pass an array double v[N] to a Fortran function, we only need to declare
it and pass it as one of its arguments. If the Fortran program is

314 CHAPTER 6. MOTION IN SPACE

real(8) function make_arrayl(v,N)
integer N
real (8) v(N)
compute v(1) ... v(N)
end function make_arrayil

then the corresponding C++ program should be:

const int N=4;
extern “C” double make_arrayl_(double v[N], const int& N);
int main() {

double v[N], x;

X = make_arrayl_(v,N);
use v[0] ... v[N—-1]
}

The only point we need to stress is that the array real(8) v(N) is indexed
from 1 to N in the Fortran program, whereas the array double v[N] is
indexed from 0 to N-1 in the C++ program. The correspondence of the
values stored in memory is v(1) — v[0], ... , v(i) — v[i-1], ... v(N)
— v[N-1].

Two dimensional arrays need more attention. In C++, arrays are in
row-major mode, whereas in Fortran in column-major mode. The contents
of a two dimensional array are stored linearly in memory. In C++, the
elements of an array double A[N] [M] are stored in the sequence A[0] [0],
Afol[1], Afolf2], ... , A[o][M-1], Af1](o], A[1][1], ... ,
Af1][M-1], ... A[N-1][M-1]. In Fortran, the elements of an array
real(8) A(N,M) are stored in the sequence A(1,1), A(2,1), A(3,1),

, A(L,M), AC2,1), A(2,2), ... , AC2,M), ... , A(N,M.
Therefore, when we pass an array from the C++ program to a Fortran
function, we have to keep in mind that the Fortran function will use it
with its indices transposed. For example, if the Fortran code defines

A(i,j) =i + j/10.0

which results into A(i,j) = i.j in decimal notation[‘] (e.g. A(2,3)=
2.3), then the value of A[i] [j] will be (j+1).(i+1) (e.g. A[2][3] =

"Of course, we assume i, j<10.

6.1. ADAPTIVE STEPSIZE CONTROL FOR RK METHODS 315

4.3, A[2][1] = 2.3)!
All of the above are summarized in the Fortran program in the file
CandFortranF.f90:

real (8) function make_arrayil(v,N)
implicit none

integer N,i

real(8) v(N)

do i=1,N
v(i) = i

end do

make_arrayl = —11.0 ! a return value

end function make_arrayl
!

real (8) function make_array2(A,N,M)

implicit none

integer N,M,i,j

real(8) A(M,N) ! Careful: N and M are interchanged!!

do i=1,M

do j=1,N

1A(i,j) = i.j, e.g. A(2,3)=2.3
A(i,j) =i + j/10.0

end do

end do

make_array2 = —22.0 ! a return value

end function make_array?2

and the C++ program in the file CandFortranC. cpp:

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>

using namespace std;

316 CHAPTER 6. MOTION IN SPACE

const int N=4, M=3;
extern "C” {
double make_arrayl_(double v[N] , const int& N);
double make_array2_(double A[N][M], const int& N,
const int& M);
}
int main() {
double A[N][M], v[N];
double x;

//Make a 1D array using a fortran function:
X = make_arrayl_(v,N);
cout <K 71D array: Return value x= 7 < x << endl;
for(int i=0;i<N;i++)
cout < v[i] << 7 75
cout << "\n \n”";
//Make an 2D array using a fortran function:
" o= make_arrayQ_(A,N,M);
cout << 72D array: Return value x= 7 < x << endl;
for(int i=0;i<N;i++){
for(int j=0;j<M;j++) //A is ... transposed!
[TALI]Lj] = GG+ .Ci+1), e.g. A[1][2] = 3.1
cout <K A[Li][j] << 7 75
cout << ’\n’;

}
}

Note that the array A[N] [M] is defined as A(M,N) in the Fortran function,
and the roles of N and M are interchanged. You can run the code and see
the output with the commands:

> gfortran —c CandFortranF.£f90
> g++ CandFortranC.cpp CandFortranF.o —o CandFortran —lgfortran
> ./CandFortran

1D array: Return value x= —11
1234

2D array: Return value x= —22
1.1 2.1 3.1

1.2 2.2 3.2

1.3 2.3 3.3

1.4 2.4 3.4

Note that the values of the array A(M,N) are transposed when printed as

6.1. ADAPTIVE STEPSIZE CONTROL FOR RK METHODS 317

rows in the C++ program.

6.1.3 The rksuite Driver

After we become wise enough, we can write the driver for the integration
routine UT (called by ut_ from our C++ program), which can be found
in the file rk3.cpp:

[/
//Program to solve a 6 ODE system using Runge—Kutta Method
//Output is written in file rk3.dat
//
// Compile with the commands:
// gtortran —c rksuite/rksuite.f;
// g++ rk3.cpp rk3_g.cpp rksuite.o —o rk3 —lgfortran
#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
#include "rk3.h”
using namespace std;
//
double k1,k2,k3,k4;
double energy(const double& t, double* Y);
void f(double& t,double* Y, double* YP);
extern 7C7 {
void setup_(const int& NEQ,
double& TSTART, double* YSTART, double& TEND,
double& TOL ,double* THRES |,
const int& METHOD, const char& TASK,
bool & ERRASS, double& HSTART, double* WORK,
const int& LENWRK, bool& MESSAGE) ;
void ut_(void f(double& t,double* Y, double* YP),
double& TWANT, double& TGOT, double* YGOT,
double* YPGOT, double* YMAX, double* WORK,
int& UFLAG);

}
/1
int main(){

string buf;

double TO,TF,X10,X20,X30,V10,V20,V30;

double t,dt,tstep;

318 CHAPTER 6. MOTION IN SPACE

int STEPS, i;
// rksuite variables:
double TOL,THRES[NEQ],WORK[LENWRK],HSTART;
double Y[NEQ],YMAX[NEQ],YP[NEQ],YSTART[NEQ];
bool ERRASS, MESSAGE;
int UFLAG;
const char TASK = 'U’;
//Input:
cout << “Runge—Kutta Method for 6-ODEs Integration\n”;
cout << “Enter coupling constants k1.,k2.,k3,k4:\n”;
cin >> k1 >> k2 >> k3 >> k4;getline(cin,buf);
cout << “Enter STEPS,TO,TF,X10,X20,X30,V10,V20,V30:\n”;
cin >> STEPS >> TO >> TF
>> X10 >> X20 >> X30
>> V10 >> V20 >> V30;getline(cin,buf);
cout << "No. Steps= 7 <K STEPS << endl;
cout < "Time: Initial TO =" < TO

< ” Final TF=” < TF << endl;
cout <L 7 X1(TO)=" <L X10

<L 7 X2(T0)=" << X20

<L 7 X3(T0)=" << X30 << endl;
cout < 7 VI(T0)=" < V10

<L 2 V2(T0)=> <L V20

<L V3(T0)=" <L V30 << endl;
// Initial Conditions:
dt = (TF-TO)/STEPS;

YSTART[0] = X10:
YSTART[1] = X20:
YSTART[2] = X30;
YSTART[3] = V10;
YSTART[4] = V20;
YSTART[5] = V30;
//Set control parameters:
TOL = 5.0e—6;
for(i = 0; i < NEQ; i++)
THRES[i] = 1.0e—10;
MESSAGE = true;
ERRASS false;
HSTART = 0.0;
// Initialization :
setup_(NEQ,TO,YSTART,TF,TDL,THRES,METHOD,TASK,
ERRASS ,HSTART , WORK , LENWRK , MESSAGE) ;
ofstream myfile(”rk3.dat”);
myfile.precision(16);
myfile < TOo<L 7 7

6.1. ADAPTIVE STEPSIZE CONTROL FOR RK METHODS 319

< YSTART[O0] << 7 7 < YSTART[1] <« 7 7
< YSTART[2] << 7 7 <L YSTART[3] K 7 7
<< YSTART[4] < 7 7 < YSTARTI[H] < 7 7
<< energy(TO,YSTART)<L '\n’;
//The calculation :
for (i=1;i<=STEPS;i++){
t = TO + i*dt;
ut_(f.t,tstep,Y,YP,YMAX ,WORK ,UFLAG);
if (UFLAG > 2) break; //error: break the loop and exit
myfile << tstep < 7 7
K Y[0] K77 KLKY[1] K77
K Y[2] K77 KLY[3] KT
K Y[4] K77 KLY[B] KT
<< energy(TO,Y) << ’\n’;
}
myfile.close();
}// main ()

All common parameters and variables are declared in an include file
rk3.h. This is done so that they are accessible by the function £ which
calculates the derivatives:

const int NEQ = 6;
const int LENWRK = 32*NEQ;
const int METHOD = 2;

extern double ki1 ,k2,k3,k4;

The number of differential equations is set equal to NEQ=6. The integra-
tion method is set by the choice METHOD=2. The variable LENWRK sets the
size of the workspace needed by the suite for the intermediate calcula-
tions.

The declaration of functions needs some care. The functions energy ()
and f() are defined in the C++ program and are declared in the global
scope (the function £ () will also be passed on to the Fortran function UT).
The functions setup_() and ut_() are defined in the Fortran program
in the file rksuite.f as SETUP() and UT(). Therefore, they are declared
within the extern "C" language linkage, defined using lowercase letters
and an underscore is appended to their names. All arguments are passed
by reference. Scalar doubles are passed as references to double&, the
double precision arrays are declared to be pointers double *, the Fortran
logical variables are declared to be references to bool&, and the Fortran

320 CHAPTER 6. MOTION IN SPACE

characterx variables{] as simple references to chars.

The main program starts with the user interface. The initial state of
the particle is stored in the array YSTART in the positions 0...5. The
first three positions are the coordinates of the initial position and the last
three the components of the initial velocity. Then, we set some vari-
ables that determine the behavior of the integration program (see the
file rksuite.doc for details) and call the subroutine SETUP. The main
integration loop is:

for (i=1;i<=STEPS;i++){
t = TO + i*dt;
ut_(f.t,tstep,Y,YP,YMAX ,WORK ,UFLAG);
if (UFLAG > 2) break; //error: break the loop and exit
myfile << ... < energy(T0,Y) << ’\n’;
}

The function f calculates the derivatives and it will be programmed by
us later. The variable t stores the desired moment of time at which we
want to calculate the functions. Because of the adaptive stepsize, it can
be different than the one returned by the Fortran subroutine UT. The
actual value of time that the next step landsf] on is tstep. The array Y
stores the values of the functions. We choose the data structure to be
such that = Y[0], y= Y[1], 2= Y[2] and v,= Y[3], v,= Y[4], v.= Y([5]
(the same sequence as in the array YSTART). The function energy(t,Y)
returns the value of the mechanical energy of the particle and its code
will be written in the same file as that of f. Finally, the variable UFLAG
indicates the error status of the calculation by UT and if UFLAG> 2 we end
the calculation.

Our test code will be on the study of the motion of a projectile in a
constant gravitational field, subject also to the influence of a dissipative
force F. = —mki. The program is in the file rk3_g.cpp. We choose the
parameters k1 and k2 so that g = -ki k and k = k2.

#include <iostream >
#include <fstream >

“The Fortran program uses only their first character, so we don’t need to use strings.
*When UGLAG < 2, tstep=t and we will not worry about them being different with
our program.

6.1. ADAPTIVE STEPSIZE CONTROL FOR RK METHODS

#include
#include
#include
#include

<cstdlib >
<{string >
<cmath>
”rk3.h”

using namespace std;
void f(double& t,double* Y, double* YP){
double x1,x2,x3,vl,v2,v3;
x1 = Y[O]; v1 = Y[3];
x2 = Y[1]; v2 = Y[4];
x3 = Y[2]; v3 = Y[b];

// Velocities: dx_i/dt = v_i
YP[O] = vi;
YP[1] = v2;
YP[2] = v3;
// Acceleration: dv_i/dt = a_i
YP[3] = —k2*v1;
YP[4] = —k2*v2;
YP[5] = —k2*v3—ki;
}
//

double energy(const double& t, double* Y){
double e;
double x1,x2,x3,vl,v2,v3;
x1 = Y[O]; v1 = Y[3];

x2 = Y[1]; v2

Y[4];

x3 = Y[2]; v3 = Y[H];

// Kinetic Energy:

e = 0.5*(vi*vi4+v2*v2+v3*v3);
// Potential Energy:

e += k1*x3;

return e;

}

321

For convenience we “translated” the values in the array Y [NEQ] into user-
friendly variable names. If the file rksuite.f is in the directory rksuite/,
then the compilation, running and visualization of the results can be done
with the commands:

> gfortran —c rksuite/rksuite.f
> g++ rk3.cpp rk3_g.cpp rksuite.o —o rk3 —lgfortran

> ./rk3

Runge—Kutta Method for 6—0DEs Integration
Enter coupling constants ki1,k2,k3,k4:

322 CHAPTER 6. MOTION IN SPACE

10 0 0 O
Enter STEPS,TO,TF,X10,X20,X30,V10,V20,V30:
10000 0 3 0001 11
No. Steps= 10000
Time: Initial TO =0 Final TF=3
X1(T0)=0 x2(T0)=0 X3(T0)=0
v1i(To)=1 v2(T0)=1 v3(T0)=1

> gnuplot

gnuplot> plot "rk3.dat” wusing 1:2 with lines title "x1(t)”
gnuplot> plot "rk3.dat” wusing 1:3 with lines title "x2(t)”
gnuplot> plot “"rk3.dat” wusing 1:4 with lines title "x3(t)”
gnuplot> plot “"rk3.dat” wusing 1:5 with lines title "vi(t)”
gnuplot> plot "rk3.dat” wusing 1:6 with lines title "v2(t)”
gnuplot> plot "rk3.dat” wusing 1:7 with lines title "v3(t)”
gnuplot> plot "rk3.dat” wusing 1:8 with lines title "E(t)”

gnuplot> set title “trajectory”
gnuplot> splot “rk3.dat” using 2:3:4 with lines mnotitle

All the above commands can be executed together using the shell script in
the file rk3.csh. The script uses the animation script rk3_animate.csh.
The following command executes all the commands shown above:

./rk3.csh £ 1 — 10 0. 0 0 0 0 0 1 1 1 10000 O 3

6.2 Motion of a Particle in an EM Field

In this section we study the non-relativistic motion of a charged particle
in an electromagnetic (EM) field. The particle is under the influence of
the Lorentz force:

F=q(E+7xB). (6.2)

Consider the constant EM field of the form E = E,2+E,9+E.z2, B = B,
The components of the acceleration of the particle are:

ag = (qEz/m)+ (¢B/m)v,

a, = (aB,/m)— (¢B/m)u,

a, = (qE./m). (6.3)

This field is programmed in the file rk3_B.cpp. We set k1 = ¢B/m, k2
=qE,/m, k3 = ¢E,/m and k4 = ¢E,/m:

6.2. MOTION OF A PARTICLE IN AN EM FIELD 323

/1

// Particle in constant magnetic and electric field
// q Bm =kl z q E/m=k2 x + k3 y + k4 z
//
#include ”sr.h”
void f(double& t,double* Y, double* YP){
double x1,x2,x3,vl,v2,v3,pl,p2,p3;
x1 = Y[O]; ptl = Y[3];
x2 = Y[1]; p2 = Y[4];
x3 = Y[2]; p3 = Y[5];
velocity(pl,p2,p3,vl,v2,v3);
//now we can use all x1.x2,x3,pl.p2,p3,vl,v2,v3

YP[O] = vi;
YP[1] = v2;
YP[2] = v3;

// Acceleration :
YP[3] = k2 + k1 * v2;

YP[4] = k3 — k1 * vi;
YP[b] = k4;

}

/]

double energy(const double& t, double* Y){
double e;

double x1,x2,x3,v1,v2,v3,pl,p2,p3,psq;
x1 = Y[O]; p1 = Y[3];

x2 = Y[1]; p2 = Y[4];

x3 = Y[2]; p3 = Y[5];

psq= pl*pl+p2*p2+p3*p3;

// Kinetic Energy:

e = sqrt(1.0+psq) —1.0;

// Potential Energy/m 0

e += — k2*x1 — k3*x2 — k4*x3;

return e;

}

We can also study space-dependent fields in the same way. The fields
must satisty Maxwell’s equations. We can study the confinement of a
particle in a region of space by a magnetic field by taking B= Byy+ Bz
with ¢B,/m = —koy, ¢B./m = ki + kez and ¢B,/m = ksz, ¢B,/m =
k14 koy. Note that V-B =0. You may also want to calculate the current
density from the equation VxB= Moj-

The results are shown in figures [6.1-6.4.

324 CHAPTER 6. MOTION IN SPACE

Figure 6.1: The trajectory of a charged particle in a constant magnetic field B = B2,
where ¢B/m = 1.0, 7(0) = 1.0 + 0.12, #(0) = 1.0Z. The integration of the equations of
motion is performed using the RK45 method from ¢y, = 0 to ¢t; = 40 with 1000 steps.

6.3 Relativistic Motion

Consider a particle of non zero rest mass moving with speed comparable
to the speed of light. In this case, it is necessary to study its motion using
the equations of motion given by special relativity[]. In the equations
below we set ¢ = 1. The particle’s rest mass is my > 0, its mass is
m = mgy/v1—v? (where v < 1), its momentum is p = m¢ and its energy
is £ =m = /p?>+ m3. Then the equations of motion in a dynamic field
F are given by:

_— = F . .

"“Of course for lower speeds, the special relativity equations of motion are a better ap-
proximation to the particle’s motion, but the corrections to the non relativistic equations
of motion are negligible.

6.3. RELATIVISTIC MOTION 325

Figure 6.2: The trajectory of a charged particle in a constant magnetic field B = B2,
where ¢B/m = 1.0 and a constant electric field E = E,i+Eyjpe qE,/m = qE,/m = 0.1.
7(0) = 1.0g+0.1%, #(0) = 1.02. The integration of the equations of motion is performed
using the RK45 method from ¢, = 0 to ty = 40 with 1000 steps. Each axis is on a
different scale.

In order to write a system of first order equations, we use the relations

U A - (6.5)
m FE A /p2 —+ m%
Using ¢ = dr/dt we obtain
& (/o) dpe/mo) _ Fe
dt 1+ (p/m0)2 ’ dt mo
By (pfmo) dpy/m) _ F,
dt A/ 1+ (p/m0)2 ’ dt mo
F.

dz (p2/mo) d(pz/mo) _ Lz (6.6)

T (pfme) dt o’

326 CHAPTER 6. MOTION IN SPACE

100

-100

Figure 6.3: The trajectory of a charged particle in a magnetic field B = B,§ + B, ?
with ¢By/m = —0.02y, ¢B./m = 1+ 0.02z, ¢(0) = 1.0y + 0.1, #(0) = 1.0&. The
integration of the equations of motion is performed using the RK45 method from ¢, = 0
to ty = 500 with 10000 steps. Each axis is on a different scale.

which is a system of first order differential equations for the functions
(x(t), y(t), 2(t), (px/mo)(t), (py/m0)(t), (p2/m0)(t)). Given the initial con-
ditions (z(0), y(0), 2(0), (pz/m0)(0), (py/m0)(0), (p./mo)(0)) their solution
is unique and it can be computed numerically using the 4th-5th order
Runge—Kutta method according to the discussion of the previous section.
By using the relations

Vs _ (pa/m0)

(pz/m0) = ﬁ Uy = \/W
me) — Uy v — (py/m0)
(py/ 0) m Y \/W

v _ (pe/m0)

(p2/mo) = \/1—_71}2 Uy = \/W’

(6.7)

6.3. RELATIVISTIC MOTION 327

Figure 6.4: The trajectory of a charged particle in a magnetic field B = B,j + B2
with ¢By/m = 0.08z, ¢B./m = 1.4 + 0.08y, ¢(0) = 1.0y + 0.1, #(0) = 1.0&. The
integration of the equations of motion is performed using the RK45 method from ¢y = 0
to ty = 3000 with 40000 steps. Each axis is on a different scale.

2(0), y(0), 2(0), vz(0), vy(0), v2(0)) in-
(@(t), y(t), 2(t), (Ps/m0)(1), (py/mo)(t),
y(t), 2(1), va(t), vy(t), va(t)). We always

we can use the initial conditions (
stead. Similarly, from the solutions
(p2/myg)(t)) we can calculate (z(t),
have to check that

v? = (v,)% + (v,)° + (v,)? < 1. (6.8)
Since half of the functions that we integrate for are the momentum instead
of the velocity components, we need to make some modifications to the
program in the file rk3.cpp. The main program can be found in the file
ST.Cpp:

/1
//Program to solve a 6 ODE system using Runge—Kutta Method
// Output is written in file sr.dat

/1

328 CHAPTER 6. MOTION IN SPACE

// Compile with the commands
// gfortran —c rksuite/rksuite.f
/| g++ sr.cpp sr_B.cpp rksuite.o —o rk3 —lgfortran
/]
#include ”sr.h”
double k1 ,k2,k3,k4;
extern "C” {
void setup_(const int& NEQ,
double& TSTART, double* YSTART, double& TEND,
double& TOL ,double* THRES |,
const int& METHOD, const char& TASK,
bool & ERRASS, double& HSTART, double* WORK,
const int& LENWRK, bool& MESSAGE);
void ut_(void f(double& t,double* Y, double* YP),
double& TWANT, double& TGOT, double* YGOT,
double* YPGOT, double* YMAX, double* WORK,
int& UFLAG);

}
//
int main() {
string buf;
double TO,TF,X10,X20,X30,V10,V20,V30;
double P10,P20,P30;
double P1,P2,P3,V1,V2,V3;
double t,dt,tstep;
int STEPS, i;
// rksuite variables:
double TOL,THRES[NEQ],WORK[LENWRK], 6 HSTART;
double Y[NEQ],YMAX[NEQ],YP[NEQ],YSTART[NEQ];
bool ERRASS, MESSAGE;
int UFLAG;
const char TASK = 'U’;
//Input:
cout <K "Runge—Kutta Method for 6-ODEs Integration\n”;
cout <L 7Special Relativistic Particle:\n”;
cout << “Enter coupling constants k1,k2.,k3,k4:\n”;
cin >> k1 >> k2 >> k3 >> kd;getline(cin,buf);
cout < ”Enter STEPS,TO,TF,X10,X20,X30,V10,V20,V30:\n"”;
cin >> STEPS >> TO >> TF
>> X10 >> X20 >> X30
>> V10 >> V20 >> V30;getline(cin,buf);
momentum (V10 ,V20,V30,P10,P20,P30);
cout << "No. Steps= 7 <K STEPS << endl;
cout < "Time: Initial TO =" < TO
<L ” Final TF=” <K TF <K endl;

6.3. RELATIVISTIC MOTION 329

cout < 7 X1(T0)=" << X10

<L ? X2(T0)=" << X20

<L 7 X3(T0)=" << X30 << endl;
cout << 7 VI1(T0)=" <L V10

<L 7 V2(T0)=" <L V20

<L 7 V3(T0)=" << V30 << endl;
cout < 7 P1(T0)=" <L P10

<L P2(T0)=" << P20

<L ” P3(T0)=" << P30 << endl;
// Initial Conditions:
dt = (TF-TO0)/STEPS;

YSTART[0] = X10;

YSTART[1] = X20;

YSTART[2] = X30;

YSTART[3] = P10;

YSTART[4] = P20;

YSTART[5] = P30;

//Set control parameters:

TOL = 5.0e—06;

for(i = 0; i < NEQ; i++)

THRES[i] = 1.0e—10;

MESSAGE = true;

ERRASS = false;

HSTART = 0.0;

//Initialization

setup_(NEQ,TO,YSTART,TF,TOL, THRES ,METHOD , TASK,
ERRASS , HSTART , WORK , LENWRK , MESSAGE) ;

ofstream myfile(”sr.dat”);

myfile.precision(16);

myfile < TO <G
< YSTART[0] << 7 7 < YSTART[1] < 7 7
< YSTART[2] < 7 7

SO LKL V2 L "
<L V3 L 77
<< energy(TO,YSTART) & ”

<L YSTART[3] < 7 7 <L YSTART[4] < 7 7
<L YSTART[H] < ’\n’;
//The calculation:
for (i=1;i<=STEPS;i++){
t = TO + i*dt;
ut_(f.t,tstep,Y,YP,YMAX ,WORK , UFLAG);
if (UFLAG > 2) break; //error: break the loop and exit
velocity(Y[3],Y[4],Y[5],V1,V2,V3);
myfile << tstep < 7 7
KL Y[0] K77 KLY[] LT

330 CHAPTER 6. MOTION IN SPACE

KL Y[2] K77
<< Vl << 2 2 << V2 << b2l ”
<L V3 COR
<< energy(TO,Y) LT

KL Y[3] K77 KLY[4] K77
KL Y[5] K7 7KL \nTy
}
myfile.close();
}// main ()
/!
//momentum —> velocity transformation
/!
void velocity(const double& pil,const double& p2,
const double& p3,
double& vi1, double& v2,
double& v3) {

double psq;
psq = pl*pl+p2*p2+p3*p3;

vl = p1/sqrt(1.0+psq);
v2 = p2/sqrt(1.0+psq);
v3 = p3/sqrt(1.0+psq);
}
/]
// velocity —> momentum transformation
/]

void momentum(const double& v1,const double& v2,
const double& v3,
double& p1, double& p2,
double& p3) {
double vsq;
vsq = vi*vi+v2*v2+v3*v3;
if (vsq >= 1.0){cerr << "momentum: vsq>=1\n";exit(1);}
pl = vi/sqrt(1.0—vsq);
p2 v2/sqrt (1.0 —vsq);
p3 v3/sqrt (1.0 —vsq);

}

The functions momentum and velocity compute the transformations (8.7).
In the function momentum we check whether the condition (6.8) is satis-
fied. These functions are also used in the function F that computes the
derivatives of the functions.

Common declarations are now in an include file sr.h:

6.3. RELATIVISTIC MOTION

331

#include <iostream >

#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>

using namespace std;

/]
const int NEQ
const int LENWRK =
const int METHOD =

6;
32*NEQ;
2;

extern double k1,k2,k3,k4;

!/

double energy(const
void f(double& t,
void velocity(const

const

void momentum(const
const

double&
double*
double&
double&
double&
double&
double&
double&
double&
double&

t, double* Y);
Y, double* YP);
pl,const double& p2,
p3.

vi, double& v2,
v3);

vl,const double& v2,
v3,

pl, double& p2,
p3);

The test drive of the above program is the well known relativistic
motion of a charged particle in a constant EM field. The acceleration of
the particle is given by equations (6.3). The relativistic kinetic energy of

the particle is

T:(ﬁ

1

—1) my = (1—|—(p/m0)2—1) mo

(6.9)

These relations are programmed in the file sr_B.cpp. The contents of

the file sr_B.cpp are:

/1

// Particle in constant Magnetic and electric field

// q Bm =kl z
/1

q E/m=k2 x + k3 y + k& z

#include ”sr.h”

void f(double& t,double* Y, double* YP){
double x1,x2,x3,v1,v2,v3,pl,p2,p3;

x1 = Y[0]; p1 =Y
x2 = Y[1]; p2 Y

[31;
[4];

332 CHAPTER 6. MOTION IN SPACE

x3 = Y[2]; p3 = Y[5H];
velocity(pl,p2,p3,v1,v2,v3);
//mow we can use all x1.x2,x3,pl.p2.p3,vl,v2,v3

YP[O] = vi;
YP[1] = v2;
YP[2] = v3;

// Acceleration :
YP[3] = k2 + k1 * v2;

YP[4] = k3 — k1 * vi;
YP[5] = k4;

}

/]

double energy(const double& t, double* Y){
double e;

double x1,x2,x3,v1,v2,v3,pl,p2,p3,psq;
x1 = Y[0]; p1 = Y[3];

x2 = Y[1]; p2 = Y[4];

x3 = Y[2]; p3 = Y[5];

psq= pl¥*pl+p2*p2+p3*p3;

// Kinetic Energy:

e = sqrt(1.0+psq) —1.0;

// Potential Energy/m 0

e += — k2%*x1 — k3*x2 — k4*x3;

return e;

}

The results are shown in figures [6.5-6.6.

Now we can study a more interesting problem. Consider a simple
model of the Van Allen radiation belt. Assume that the electrons are
moving within the Earth’s magnetic field which is modeled after a mag-
netic dipole field of the form:

_ ReN°’ 1., .
B =B, (7) [3(d)P — d] , (6.10)
where d = dd is the magnetic dipole moment of the Earth’s magnetic
field and 7 = r7. The parameter values are approximately equal to By =
3.5 x 107°T, r ~ 2R, where Ry is the radius of the Earth. The typical
energy of the moving particles is ~ 1 MeV which corresponds to velocities
of magnitude v/c = \/E? —m3/E ~ /1 —0.5122/1 = 0.86. We choose

the coordinate axes so that d = 2 and we measure distance in Ry units/].

*Since ¢ = 1, the unit of time is the time that the light needs to travel distance equal

6.3. RELATIVISTIC MOTION 333

Figure 6.5: The trajectory of a relativistic charged particle in a magnetic field
B = B.% with ¢B,/my = 10.0, #(0) = 0.95§ + 0.102, #(0) = 1.0Z. The integration is
performed by using the RK45 method from ¢y = 0 to t; = 20 with 1000 steps. Each
axis is on a different scale.

Then we obtain:

B, — BO?):C—;
.
3yz
By — BOF
3 1
B. = B (%——J (6.11)
T T

The magnetic dipole field is programmed in the file sr_Bd. cpp:

/]
// Particle in Magnetic dipole field:

// q B_1/m = k1 (3 x1 x3)/r"5

to Rg in the vacuum.

334 CHAPTER 6. MOTION IN SPACE

0.4 T T T T T T T

0.3 r 1

0.2 .

_04 1 1 1 1 1 1 1
09 1 11 12 13 14 15 16 1.7

Figure 6.6: Projection of the trajectory of a relativistic charged particle in a magnetic
field B = B.2 with ¢B,/mo = 10.0, on the zy plane. 7(0) = 0.95j 4 0.102, #(0) = 1.0.
The integration is performed by using the RK45 method from to = 0 to t; = 20 with
1000 steps. Each axis is on a different scale.

// q B.2/m = k1 (3 x2 x3)/r"b
// q B.3/m = k1[(3 x3 x3)/rr5—1/r"3]
/]
#include ”sr.h”
void f(double& t,double* Y, double* YP){
double x1,x2,x3,vl,v2,v3,pl,p2,p3;
double B1,B2,B3;
double r,r5,r3;
x1 = Y[O]; pt = Y[3];
x2 = Y[1]; p2 = Y[4];
x3 = Y[2]; p3 = Y[5];
velocity(pl,p2,p3,v1,v2,v3);
//now we can use all x1.,x2,x3,pl.p2,p3.,vl,v2,v3

YP[O] = vi;
YP[1] = v2;
YP[2] = v3;

// Acceleration :

6.3. RELATIVISTIC MOTION 335

100

Figure 6.7: The influence of an additional electric field ¢E/mo = 1.07 on the
trajectory shown in figure [6.5.

T = sqrt(x1*x1+x2*x2+x3*x3);
r3 = ®¥Ee o
r5 = r*r*r3;
ifC r> 0.0){
B1 = k1*(3.0*x1*x3)/r5;
B2 = k1*(3.0*x2*x3)/r5;
B3 = k1*((3.0*x3*x3)/r5—1/r3);
YP[3] = v2*B3—v3*B2;
YP[4] = v3*B1—v1*B3;
YP[5] = v1*B2—-v2*B1;
}else {
YP[3] = 0.0;
YP[4] = 0.0;
YP[5] = 0.0;

}
}
/]
double energy(const double& t, double* Y){
double e;

336 CHAPTER 6. MOTION IN SPACE

double x1,x2,x3,v1,v2,v3,pl,p2,p3,psq;
x1 = Y[O]; p1 = Y[3];

x2 = Y[1]; p2 = Y[4];

x3 = Y[2]; p3 = Y[3];

psq= pl*pl+p2*p2+p3*p3;

// Kinetic Energy:

e = sqrt(1.0+psq) —1.0;

return e;

0.02
10.012 50,004 0.008 0012 0.016

Figure 6.8: The trajectory of a charged particle in a magnetic dipole field given by
equation (B.11). We used By = 1000, 7 = 0.023 + 2.002, 7 = —0.999992. The integration
was done from ¢y = 0 to £y = 5 in 10000 steps.

The results are shown in figure [6.§. The parameters have been exag-
gerated in order to achieve an aesthetically pleasant result. In reality, the
electrons are moving in very thin spirals and the reader is encouraged to
use more realistic values for the parameters %, By, 7. The problem of
why the effect is not seen near the equator is left as an exercise.

6.4.

PROBLEMS 337

6.4 Problems

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Compute the trajectory of a projectile moving in space in a con-
stant gravitational field and under the influence of an air resistance
proportional to the square of its speed.

Two point charges are moving with non relativistic speeds in a
constant magnetic field B = B:. Assume that their interaction is
given by the Coulomb force only. Write a program that computes
their trajectory numerically using the RK45 method.

Write a program that computes the trajectory of the anisotropic

harmonic oscillator F = —k,z —kyyy —k.zz. Compute the three
dimensional Lissajous curves which appear for appropriate values

of the angular frequencies w, = \/k,/m, w, = \/ky/m, w, = \/k,/m.

Two particles of mass M are at the fixed positions i = aZ and
Ty, = —az. A third particle of mass m interacts with them via a
Newtonian gravitational force and moves at non relativistic speeds.
Compute the particle’s trajectory and find initial conditions that
result in a planar motion.

Solve problem BlfI9 of page using the RK45 method. Choose
initial conditions so that the system executes only translational mo-
tion. Next, choose initial conditions so that the system executes
small vibrations and its center of mass remains stationary. Find the
normal modes of the system and choose appropriate initial condi-
tions that put the system in each one of them.

Solve the previous problem by putting the system in a box |z| < L
and |y| < L.

Solve the problem B.R2(in page by using the RK45 method.

Solve the problem B.R1 in page by using the RK45 method.

338

6.9

6.10

6.11

6.12

6.13

CHAPTER 6. MOTION IN SPACE

The electric field of an electric dipole p'= pZ is given by:

E = Ep+E.2
1 3psinfcosd

E, =

4d7eq r3
1 20—1
B - p(3cos®d — 1) (6.12)
4reg r3

where p = /224 y? = rsinf, E, = E,cos¢, £, = E,sin¢ and
(r,6, ¢) are the polar coordinates of the point where the electric field
is calculated. Calculate the trajectory of a test charge moving in this
field at non relativistic speeds. Calculate the deviation between the
relativistic and the non relativistic trajectories when the initial speed
is 0.01¢, 0.1¢, 0.5¢, 0.9¢ respectively (ignore radiation effects).

Consider a linear charge distribution with constant linear charge
density A. The electric field is given by

Calculate the trajectories of two equal negative test charges that
move at non relativistic speeds in this field. Consider only the
electrostatic Coulomb forces and ignore anything else.

Consider a linear charge distribution on four straight lines parallel
to the z axis. The linear charge density is A and it is constant. The
four straight lines intersect the zy plane at the points (0,0), (0,a),
(a,0), (a,a). Calculate the trajectory of a non relativistic charge
in this field. Next, compute the relativistic trajectories (ignore all
radiation effects).

Three particles of mass m interact via their Newtonian gravitational
force. Compute their (non relativistic) trajectories in space.

There is a C++ “translation” of rksuite. Download it from netlib
.org/ ode/ rksuite and teach yourself how to use it. The docu-
mentation is not as explicit as for the Fortran version, part of it is in
the source code file rksuite.cpp. You can teach yourself how to use
it by reading the example file RksuiteTest.cpp and the methods of

http://netlib.org/ode/rksuite/
http://netlib.org/ode/rksuite/

6.4. PROBLEMS 339

the class RKSUITE in the file rksuite.h. Write a program to study
the motion of the non relativistic electron in a constant magnetic
field. Then repeat for the relativistic electron.

340 CHAPTER 6. MOTION IN SPACE

Chapter 7

Electrostatics

In this chapter we will study the electric field generated by a static charge
distribution. First we will compute the electric field lines and the equipo-
tential surfaces of the electric field generated by a static point charge dis-
tribution on the plane. Then we will study the electric field generated by
a continuous charge distribution on the plane. This requires the numer-
ical solution of an elliptic boundary value problem which will be done
using successive over-relaxation (SOR) methods.

7.1 Electrostatic Field of Point Charges

Consider N point charges (); which are located at fixed positions on the

plane given by their position vectors 75, ¢ = 1,..., N. The electric field is
given by Coulomb’s law
N
) i 71
E() 47r60 Z:: 3|2 i .0)

where p; = (7"—7;)/|7— ;| is the unit vector in the direction of 7 —7;. The
components of the field are

Qi(r — x;)

N
Ey(z,y) = 4WEOZ

i=1 {L‘ - :Ez (y yz))3/2

N
iy —)
E,(x, = g , (7.2)
y(y) 47‘(6() —]J — 'Tz 2 ¢ (y _ yi)2)3/2

341

342 CHAPTER 7. ELECTROSTATICS

The electrostatic potential at 7 is

1 < Qi
V() =V(z,y) = e ; (@2t (g — g (7.3)
and we have that
E(7) = -VV(F). (7.4)

The electric field lines are the integral curves of the vector field E.ie.
the curves whose tangent lines at each point are parallel to the electric
field at that point. The magnitude of the electric field is proportional to
the density of the field lines (the number of field lines per perpendicular
area). This means that the electric flux ®p = [E-dA through a surface
S is proportional to the number of field lines that cross the surface.
Electric field lines of point charge distributions start from positive charges
(sources), end in negative charges (sinks) or extend to infinity.

The equipotential surfaces are the loci of the points of space where
the electrostatic potential takes fixed values. They are closed surfaces.
Equation (7.4) tells us that a strong electric field at a point is equivalent to
a strong spatial variation of the electric potential at this point, i.e. to dense
equipotential surfaces. The direction of the electric field is perpendicular
to the equipotential surfaces at each pointf, which is the direction of
the strongest spatial variation of V, and it points in the direction of
decreasing V. The planar cross sections of the equipotential surfaces are
closed curves which are called equipotential lines.

The computer cannot solve a problem in the continuum and we have
to consider a finite discretization of a field line. A continuous curve is
approximated by a large but finite number of small line segments. The
basic idea is illustrated in figure [7.1: The small line segment Al is taken
in the direction of the electric field and we obtain

E E
Ar = Al =& Ay = Al = 7.5
T z Y 7 (7.5)

where E = |E| = \/E2 + B2,

‘Since for every small displacement dr" along an equipotential surface the potential
stays constant (dV = 0), we have that 0 = dV = VV . di = —E - dF, which implies
E L dr.

7.1. ELECTROSTATIC FIELD OF POINT CHARGES 343

X

Figure 7.1: The electric field is tangent at each point of an electric field line and
perpendicular to an equipotential line. By approximating the continuous curve by the
line segment Al, we have that Ay/Az = E, /E,.

In order to calculate the equipotential lines we use the property that
they are perpendicular to the electric field at each point. Therefore, if
(Az, Ay) is in the tangential direction of a field line, then (—Ay, Az) is
in the perpendicular direction since (Ax,Ay) - (—Ay,Ax) = —AzAy +
AyAzx = 0. Therefore the equations that give the equipotential lines are

B E, B E,
Ax = Alf, Ay = Al 7 (7.6)

The algorithm that will allow us to perform an approximate calcula-
tion of the electric field lines and the equipotential lines is the following:
Choose an initial point that belongs to the (unique) line that you want to
draw. The electric field can be calculated from the known electric charge
distribution and equation (7.2). By using a small enough step Al we

344 CHAPTER 7. ELECTROSTATICS

move in the direction (Ax, Ay) to the new position
r—=x+Ar, y—y+ Ay, (7.7)

where we use equations (7.5) or (7.6). The procedure is repeated until
the drawing is finished. The programmer sets a criterion for that, e.g.
when the field line steps out of the drawing area or approaches a charge
closer than a minimum distance.

7.2 The Program — Appetizer and ... Desert

The hurried, but slightly experienced reader may skip the details of this
section and go directly to section [7.4. There she can find the final form
of the program and brief usage instructions.

In order to program the algorithm described in the previous section,
we will separate the algorithmic procedures into four different but well
defined tasks:

* Main program: The data structure, which is given by the position of
the charges stored in the arrays X[P], Y[P] and the charges stored
in the array Q[P], is defined. It also contains the user interface
which consists of reading data entered by the user, like the number
of charges N, their positions and magnitude. Then the calculation
of a group of field or equipotential lines is performed by calling the
routines eline or epotline respectively.

¢ void function eline(xin,yin,X,Y,Q,N): Calculates the electric
field line passing through the point xin,yin. On entry, the user
inputs the point xin,yin and the data N, X[N], Y[N], Q[N]. On
exit, the function prints to the stdout the coordinates of the ap-
proximate electric field line. The line extends up to a point that is
either too close to one of the point charges or until the line leaves
the drawing areaf]. Tt calls the functions efield for the calculation
of the electric field and mdist for the calculation of the minimum
and maximum distance of a point on the field line from all the point
charges.

’Remember that field lines start at sources, end at sinks or extend to infinity.

7.2. THE PROGRAM — APPETIZER AND ... DESERT 345

* void function epotline(xin,yin,X,Y,Q,N): Calculates the equipo-
tential line passing through the point xin,yin. On entry, the user
inputs the point xin,yin and the data N, X[N], Y[N], Q[N]. On exit,
the function prints to the stdout the coordinates of the approximate
equipotential line. The function stops calculating an equipotential
line when it comes back close enough to the original pointf| xin,yin
or when it leaves the drawing area. It calls the functions efield
for the calculation of the electric field and mdist for the calculation
of the minimum and maximum distance of a point on the equipo-
tential line from all the point charges.

e void function efield(x0,y0,X,Y,Q,N,Ex,Ey): Calculates the elec-
tric field Ex, Ey at position x0, y0. On entry, the user provides
the number of charges N, the position of charges X[N], Y[N], the
charges Q[N] and the position x0, y0. On exit, the routine provides
the values Ex, Ey.

¢ void function mdist(x0,y0,X,Y,N,rmin,rmax): Calculates the max-
imum and minimum distance of the point x0, y0 from all charges
located at X[N], Y[N]. On entry, the user provides the number of
charges N, the position of charges X[N], Y[N] and the point x0, yO.
On exit, the routine provides the minimum and maximum distances
rmin,rmax.

In the main program, the variables N, X[N], Y[N] and Q[N] must
be set. These can be hard coded by the programmer or entered by the
user interactively. The first choice is coded in the program listed below,
which can be found in the file ELines.cpp. We list a simple version of
the main() function below:

int main(){
string buf;
const int P = 20; //max number of charges
double X[P], Y[P], Q[P];
int N;
// SET CHARGE DISTRIBUTION ———
N = 2;
X[0] = 1.0;

‘Remember that the equipotential lines are closed.

346

Y[O]
Q0]
X[1]
Y[1]
Q1]

/]
eline (0.
eline (0.
e11ne(0

}//mam()

KKK KR <R <<

DRAWING LINES
LQLN)

CHAPTER 7. ELECTROSTATICS

The statements

N N’
X[0] = 1.
Y[0O] = O.
Qo] = 1.
X[1] = -1
Y[1] = O.
Q1] = -1

define two opposite charges Q[0]= -Q[1]= 1.0 located at (1,0) and (—1,0)
respectively. The next lines call the function eline in order to perform the

calculation of 8 field lines passing through the points (0,+1/2), (

(0,43/2), (0, +2):

0,+1),

eline (0.
eline (0.
eline (0.
eline (0.

eline(O 0,

<o <

[\’);A»AOI\D'A'AO
OU‘OU‘OU‘OOT
LT I -]

s2==2=2=2=2=2=
~

~—
- e

D00 0 00 0 00
~

These commands print the coordinates of the field lines to the stdout
and the user can analyze them further.

7.2. THE PROGRAM — APPETIZER AND ... DESERT 347

The program for calculating the equipotential lines is quite similar.
The calls to the function eline are substituted by calls to epotline.

For the program to be complete, we must program the functions
eline, efield, mdist. This will be done later, and you can find the
full code in the file ELines.cpp. For the moment, let’s copy the main
programf listed above into the file Elines.cpp and compile and run it
with the commands:

> g++ ELines.cpp —o el
> ./el > el.out

The stdout of the program is redirected to the file el.out. We can plot
the results with gnuplot:

gnuplot> plot “el.out” with dots

The result is shown in figure [7.2.

Let’s modify the program so that the user can enter the charge dis-
tribution, as well as the number and position of the field lines that she
wants to draw, interactively. The part of the code that we need to change
is:

/] SET CHARGE DISTRIBUTION ——
cout < 7# Enter number of charges:” < endl;
cin >> N; getline(cin,buf);
cout < "# N= 7 <@ << endl;
for (i=0;i<N;i++){
cout < 7# Charge: 7 << i+! << endl;
cout << "# Position and charge: (X,Y,Q):” << endl;
cin >> X[i] >> YI[i] >> Qlil; getline(cin,buf);
cout <K “# (X,Y)= "
KL X[1] 7 7
KL Y[i] <7 Q=7
<L Qli] << endl;

}

The first line asks the user to enter the number of charges in the distri-
bution. It proceeds with reading it from the stdin and prints the result

‘See the file ELines_version0.cpp.

348 CHAPTER 7. ELECTROSTATICS

15| |]

05 | | \]

Figure 7.2: Some electric field lines of the electric field of two opposite charges
calculated by the program ELines.cpp (version 1!).

to the stdout. The following loop reads the positions and charges and
stores them at the position i of the arrays X[i], Y[i], Q[i]. The results
are printed to the stdout so that the user can check the values read by
the program.

The drawing of the field lines is now done by modifying the code so
that:

/] DRAWING LINES
cout <K ”# How many lines to draw?\n”;
cin >> draw; getline(cin,buf);

for(i=1;i<=draw;i++){
cout << ”# Initial point (x0,y0):\n”;
cin >> x0 >> yo0; getline(cin,buf);
eline(x0,y0,X,Y,Q.N);

}

As a test case, we run the program for one charge ¢ = 1.0 located at
the origin and we draw one field line passing through the point (0.1,0.1).

7.2. THE PROGRAM — APPETIZER AND ... DESERT

349

g++ ELines.cpp —o el
/el

Enter number of charges:
N= 1

Charge: 1

.0 0.0 1.0
(X,Y)=0 0 g= 1
How many lines to draw?

Initial point (x0,y0):
.1 0.1

O~ HH O IR~ FEVV

Position and charge: (X,Y,Q):

0.10000000000000001 0.10000000000000001

0.092928932188134528 0.092928932188134528

0.08585786437626905 0.08585786437626905

For charge distributions with a large number of point charges, use an
editor to record the charges, their positions and the points where the field

lines should go through.

2

1.0 0.0 1.0
-1.0 0.0 —-1.0
8 Number
0.0 0.5 x0,y0:
0.0 1.0 x0,y0:
0.0 1.5 x0,y0:
0.0 2.0 x0,y0:
0.0 —-0.5 x0,y0:
0.0 —1.0 x0,y0:
0.0 —1.5 x0,y0:
0.0 —2.0 x0,y0:

N: Number of Charges
(X,Y,Q): Position and charge
(X,Y,Q): Position and charge

of lines to draw

Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial

point
point
point
point
point
point
point
point

of
of
of
of
of
of
of
of

line
line
line
line
line
line
line
line

If the data listed above is written into

mand

a file, e.g. Input, then the com-

./el < Input > el.out

reads the data from the file Input and redirects the data printed to the
stdout to the file el.out. This way you can create a “library” of charge

350 CHAPTER 7. ELECTROSTATICS

distributions and the field lines of their respective electric fields. The
main() function (version 2) is listed below:

int main() {
string buf;

const int P = 20; //max number of charges
double X[P], Y[P], Q[P];
int N;
int i,j,draw;
double x0,y0;
// SET CHARGE DISTRIBUTION ———
cout << 7# Enter number of charges:” < endl;
cin >> N; getline(cin,buf);
cout < "# N= 7 <@ << endl;
for (i=0;i<N;i++){
cout < 7# Charge: 7 < i+l << endl;
cout << ”# Position and charge: (X,Y,Q):” << endl;
cin >> X[i] >> YI[i] >> Qlil; getline(cin,buf);
cout << # (X, Y)= "
KL X1l K 7 7
KL Y[i] <7 Q=7
<L Q[i] << endl;
}
// DRAWING LINES
cout <K ”# How many lines to draw?\n”;
cin >> draw; getline(cin,buf);

for(i=1;i<=draw;i++){
cout << ”# Initial point (x0,y0):\n”;
cin >> x0 >> yO0; getline(cin,buf);
eline(x0,y0,X,Y,Q,N);
}
}

If you did the exercises described above, you should have already
realized that in order to draw a nice representative picture of the electric
field can be time consuming. For field lines, one can use simple physical
intuition in order to automate the procedure. For distances close enough
to a point charge the electric field is approximately isotropic. The number
of field lines crossing a small enough curve which contains only the
charge is proportional to the charge (Gauss’s law). Therefore we can
draw a small circle centered around each charge and choose initial points
isotropically distributed on the circle as initial points of the field lines.

7.2. THE PROGRAM — APPETIZER AND ... DESERT 351

The code listed below (version 3) implements the idea for charges that
are equal in magnitude. For charges different in magnitude, the program
is left as an exercise to the reader.

int main() {
string buf;

const double PI 2.0*atan2(1.0,0.0);

const int P 20; //max number of charges
double X[P], Y[P], Q[P];
int N;
int i,j,nd;
double x0,y0, theta;
// SET CHARGE DISTRIBUTION ——
cout < 7# Enter number of charges:” << endl;
cin >> N; getline(cin,buf);
cout <K "# N= 7 < << endl;
for (i=0;i<N;i++){
cout < "# Charge: 7 << i+l << endl;
cout << "# Position and charge: (X,Y,Q):” << endl;
cin >> X[i] >> YI[i] >> Ql[il; getline(cin,buf);
cout << “# (X,Y)= "
KL X[i] <7 7
KLYl 7 Q=7
<L Qli] << endl;
}
// DRAWING LINES
//We draw 2*nd field lines around each charge
nd = 6;

for (i=0;i<N;i++)
for(j=1;j<=(2*nd) ; j++){

theta = (PI/nd)*j;
x0 = X[i] + 0.1 * cos(theta);
yO = Y[i] + 0.1 * sin(theta);

eline(x0,y0,X,Y,Q,N);
}

We set the number of field lines around each charge to be equal to
12 (nd=6). The initial points are taken on the circle whose center is
(X[i],Y[i]) and its radius is 0.1. The 2*nd points are determined by
the angle theta=(PI/nd)*j.

We record the data of a charge distribution in a file, e.g. Input. We list
the example of four equal charges ¢; = £1 below, located at the vertices

352 CHAPTER 7. ELECTROSTATICS

of a square:
4 N: Number of charges
1 1 —1 (X,Y,Q): Position and charge
-1 1 1 (X,Y,Q): Position and charge
1 —1 1 (X,Y,Q): Position and charge
-1 -1 —1 (X,Y.Q): Position and charge

Then we give the commands:

> g++ ELines.cpp —o el
> ./el < Input > el.out
> gnuplot

gnuplot> plot

t1)

el.out” with dots

The results are shown in figures and [7.4. The reader should deter-
mine the charge distributions that generate those fields and reproduce
the figures as an exercise.

For the computation of the equipotential lines we can work in a similar
way. We will follow a quick and dirty way which will not produce an
accurate picture of the electric field and choose the initial points evenly
spaced on an square lattice. For a better choice see problem B. The
function main() from the file EPotential.cpp is listed below:

int main() {
string buf;

const int P = 20; //max number of charges

double X[P], Y[P], Q[P];

int N;

int i,j,nd;

double x0,y0,rmin, rmax,L;

// SET CHARGE DISTRIBUTION ———

cout <L 7# Enter number of charges:” << endl;

cin >> N; getline(cin,buf);

cout < "# N= 7 < << endl;

for (i=0;i<N;i++){
cout <L 7# Charge: 7 << i+1 << endl;
cout < ”# Position and charge: (X,Y,Q):” << endl;
cin >> X[i] >> Y[i] >> Qlil; getline(cin,buf);
cout << “# (X, Y)= "

KL X[<77

7.2. THE PROGRAM — APPETIZER AND ... DESERT 353

A b N A O B N oW b

A WO N B O B N oW b
A WO N A O B N oW b

Figure 7.3: Field lines of a static charge distribution of point charges generated by
the program ELines. cpp.

KL Y[i] 7 Q=7
<L Qli] << endl;

}
/] DRAWING LINES

//We draw lines passing through an equally
//spaced lattice of N=(2*nd+1)x(2*nd+1) points
//in the square —I<= x <= L, —I<= y <= L.
nd = 6; L = 1.0;
for (i=—nd;i<nd;i++)
for (j=—nd; j<=nd; j++){
x0 = i*(L/nd);
yo = j*(L/mnd);
cout <K "# @ ”
KiK77KJKK T 7KL L/nd L7
<KL x0KL 7T KL y0 << endl;
mdist(x0,y0,X,Y,N,rmin, rmax);
//we avoid getting too close to a charge:
if (rmin > L/(nd*10)) epotline(x0,y0,X,Y,Q,N);

354 CHAPTER 7. ELECTROSTATICS

A D N B O B N W b
- R — -

A b N B O B N oW b

A
@
N
-
ok
-
N
w
IS

Figure 7.4: Field lines of a static charge distribution of point charges generated by
the program ELines. cpp.

U |

The first and second part of the code is identical to the previous one.
In the third part we call the function epotline for drawing an equipo-
tential line for each initial point. The initial points are on a square lattice
with (2#nd+1)*(2*nd+1)= 81 points (nd=4). The lattice extends within
the limits set by the square (1,1), (—1,1), (-1,-1), (1,—1) (L=1.0). For
each point (x0,y0) we calculate the equipotential line that passes through
it. We check that this point is not too close to one of the charges by call-
ing the function mdist. The call determines the minimum distance rmin
of the point from all the charges which should be larger than L/ (nd*10).
You can run the program with the commands:

> g++ EPotential.cpp —o ep

> ./ep < Input > ep.out

> gnuplot

gnuplot> plot “ep.out” with dots

Some of the results are shown in figure [1.5.

7.3 The Program — Main Dish

In this section we look under the hood and give the details of the inner
parts of the program: The functions eline and epotline that calculate
the field and equipotential lines, the function efield that calculates the

7.3. THE PROGRAM — MAIN DISH 355

15

Figure 7.5: Equipotential lines of the electric field generated by a point charge distri-
bution on the plane calculated by the program in EPotential.cpp. Beware: the density
of the lines is not correctly calculated and it is not proportional to the magnitude of the
electric field. See problem [{.5.

electric field at a point and the function mdist that calculates the mini-
mum and maximum distances of a point from the point charges.
The function eline is called by the statement:

eline(x0,y0,X,Y,Q.N);

The input to the routine is the initial point (x0,y0), the number of
charges N, the positions of the charges (X[N],Y[N]) and the charges Q[N].
The routine needs some parameters in order to draw the field line. These
are “hard coded”, i.e. set to fixed values by the programmer that cannot
be changed by the user that calls the routine in her program. One of
them is the step Al of equation (E) which sets the discretization step
of the field line. It also sets the minimum distance of approaching to
a charge equal to 2Al. The size of the drawing area of the curve is set
by the parameter max_dist=20.0. We should also provide a check in

356 CHAPTER 7. ELECTROSTATICS

the program that checks whether the electric field is zero, in which case
the result of the calculation in equation (7.5) becomes indeterminate. By
taking Al > 0, the motion is in the direction of the electric field, which
ends on a negative charge or outside the drawing area (why?). In order
to draw the line in both directions, set Al < 0 and repeat the calculation.

The code is listed below:

void
eline (double xin,double yin,
double* X, double* Y,double* Q, const int N){

const double step =0.01;

const double max_dist=20.0;

int i, direction;

double x0,y0;

double rmin,rmax,r,dx,dy,dl;
double Ex,Ey,E;

cout.precision(17);
for(direction=—1;direction<=1;direction+=2){

dl = direction * step;
x0 = xin;
y0 = yin;
dx = 0.0;
dy = 0.0;

mdist(x0,y0,X,Y,N,rmin, rmax);

while (rmin > (2.0*step) && rmax < max_dist) {
cout << x0 <K 7 7 KL y0 KL '\n’;
//We evaluate the E—field at the midpoint:
// This reduces systematic errors
efield(x0+0.5*dx,y0+0.5*dy.X,Y,Q.N,Ex,Ey);
E = sqrt(Ex*Ex+Ey*Ey);
if(E <= 1.0e—10) break;
dx = d1*Ex/E;
dy d1*Ey/E;
x0 x0 + dx;
yO = y0 + dy;
mdist(x0,y0,X,Y,N,rmin, rmax);

}// while (rmin > (2.0*step) && rmax < max_dist)

}//for(direction=—1;direction <=1;direction+=2)

}

In the first part of the code we have the variable declarations. We note
that the values of the parameters step and max_dist are “hard coded”

7.3. THE PROGRAM — MAIN DISH 357

into our program and the user cannot change them:

const double step =0.01;
const double max_dist=20.0;

Their values should be the result of a careful study by the programmer
since they determine the accuracy of the calculation.
The outmost loop

for(direction=—1;direction<=1;direction+=2){
dl = direction * step;

}

sets the direction of motion on the field line (i.e. the sign of Al). The
loop is executed twice with direction taking the two values —1 and 1.

The commands x0 = xin, yO = yin define the initial point on the
field line. (x0, yO) is the current point on the field line which is printed
to the stdout. The variables (dx, dy) set the step (x0, y0) — (x0+dx,
yO+dy). The drawing of the field line is done in the inner loop

mdist (x0,y0,X,Y,N,rmin, rmax);
while (rmin > (2.0*step) && rmax < max_dist) {
cout << x0 << 7 7 KL y0 KL '\n’y

mdist(x0,y0,X,Y,N,rmin, rmax);

)

which is executed provided that the logical expression (rmin > (2.0*step)
&% rmax < max_dist) is true This happens as long as the current point is
at a distance greater than 2.0*step and the maximum distance from all
charges is less than max_distf. The minimum and maximum distances
are calculated by calling the function mdist.

The electric field, needed in equation (7.5), is calculated by a call to
efield(x0+0.5%dx,y0+0.5%dy,X,Y,Q,N,Ex,Ey). The first two arguments
give the point at which we want to calculate the electric field, which is
chosen to be the midpoint (x0+dx/2,y0+dy/2) instead of (x0,y0). This
improves the stability and the accuracy of the algorithm.

®The choice is not unique of course, you may also try e.g. rmin < max_dist.

358 CHAPTER 7. ELECTROSTATICS

Equation (7.5) is coded in the commands

E = sqrt(Ex*Ex+Ey*Ey);
dx = d1*Ex/E;
dy = dl1*Ey/E;
x0 = x0 + dx;
yO = yO + dy;

We also perform checks for the cases E=0.0 and dx=dy=0.0:

if(E <= 1.0e—10) break;

When the magnitude of the electric field becomes too small we stop the
calculation by exiting the loop with the command break. The reader can
improve the code by adding more checks of singular cases.

The function epotline is programmed in a similar way. The main()
function is listed below:

int main(){

string buf;
const int P = 20; //max number of charges
double X[P], Y[P], Q[P];
int N;
int i,j,nd;
double x0,y0,rmin, rmax,L;
// SET CHARGE DISTRIBUTION ———
cout << 7# Enter number of charges:” < endl;
cin >> N; getline(cin, buf);
cout < "# N= 7 <K<K N << endl;
for (i=0;i<N;i++){
cout <L 7# Charge: 7 << i+1 << endl;
cout << ”# Position and charge: (X,Y,Q):” << endl;
cin >> X[i] >> Y[il >> Qlil; getline(cin,buf);
cout <K “# (X, Y)= "
KL X[i] 77
KL Y[i] K7 Q=7
<L Q[i] << endl;
1
/] DRAWING LINES

//We draw lines passing through an equally
//spaced lattice of N=(2*nd+1)x(2*nd+1) points
//in the square —I<= x <= L, —I<= y <= L.

7.3. THE PROGRAM — MAIN DISH 359

nd = 6; L = 1.0;
for (i=—nd;i<nd;i++)
for (j=—nd; j<=nd;j++){
x0 = i*(L/nd);
yo = j*(L/nd);
cout <K "# @ ”
K i<7 7K jK 7”7 <K L/nd L7
<K x0KKL 77 KL y0 << endl;
mdist(x0,y0,X,Y,N,rmin, rmax);
//we avoid getting too close to a charge:
if (rmin > L/(nd*10)) epotline(x0,y0,X,Y,Q,N);

The differences are minor: The equipotential lines are closed curves,
therefore we only need to transverse them in one direction. The criterion
for ending the calculation is to approach the initial point close enough
or leave the drawing area:

while(r > (0.9*dl) && r < max_dist){

}

The values of dx, dy are calculated according to equation ([7.6):

dx
dy

d1*Ey/E;
—d1*Ex/E;

The function efield is an application of equationsf (7.2):

void

efield(double x0, double yo0,
double* X, double* Y,double* Q, const int N,
double& Ex,double& Ey){

int i,

double r3,xi,yi;
Ex = 0.0;

Ey = 0.0;

for (i=0;i<N;i++){
xi = x0-X[i];

*You may improve the program by checking whether r; = 0.

360 CHAPTER 7. ELECTROSTATICS

yi = yOo-Y[i];

r3 pow(xi*xi+yi*yi,—1.5);
Ex = Ex + Q[i]*xi*r3;

Ey = Ey + Qlil*yi*r3;

Finally, the function mdist calculates the minimum and maximum
distance rmin and rmax of a point (x0,y0) from all the point charges in
the distribution:

void
mdist (double x0, double y0 ,
double* X,double* Y, const int N,
double& rmin,double& rmax) |
int i;
double r;
rmax = 0.0;

rmin = 1000.0;

for(i=0;i<N;i++){
r = sqrt ((x0—X[i]) *(x0-X[1i]) + (yo—-Y[i]) *(yo-Y[i]));
if (r > rmax) rmax = r;
if(r < rmin) rmin r;

}

}

The initial value of rmin depends of the limits of the drawing area (why?).

7.4 The Program - Conclusion

In this section we list the programs discussed in the previous sections and
provide short usage information for compiling, running and analyzing
your results. You can jump into this section without reading the previous
ones and go back to them if you need to clarify some points that you
find hard to understand.

First we list the contents of the file ELines.cpp:

#include <iostream >
#include <fstream >
#include <cstdlib >

7.4. THE PROGRAM - CONCLUSION

#include <string>
#include <cmath>
using namespace std;

/]
void
eline (double xin,double yin,

double* X,double* Y,double* Q, const int N);

void
efield(double x0,double yoO,

double* X, double* Y,double* Q, const int N,
double& Ex,double& Ey);
void
mdist (double x0, double yO,
double* X, double* Y, const int N,
double& rm,double& rM);
/1l
int main() {
string buf;
const double PI = 2.0*atan2(1.0,0.0);
const int P = 20; //max number of charges
double X[P], Y[P], Q[P];
int N;
int i,j,nd;
double x0,y0, theta;
/] SET CHARGE DISTRIBUTION ——
cout << ”# Enter number of charges:” << endl;
cin >> N; getline(cin,buf);
cout < "# N= 7 <K N << endl;
for (i=0;i<N;i++){
cout <L 7# Charge: 7 << i+l << endl;
cout << "# Position and charge: (X,Y,Q):” << endl;
cin >> X[i] >> Y[i] >> Qlil; getline(cin,buf);
cout <K “# (X,Y)= "7
KL X[i] 7 7
KL Y[E] K7 Q=7
<L Qli] << endl;

}
// DRAWING LINES

//We draw 2*nd field lines around each charge
nd = 6;
for (i=0;i<N;i++)
for(j=1;j<=(2*nd) ; j++){
theta = (PI/nd)*j;
x0 = X[i] + 0.1 * cos(theta);
yO Y[i] + 0.1 * sin(theta);

361

362 CHAPTER 7. ELECTROSTATICS

eline(x0,y0,X,Y,Q,N);
}
} // main ()
/]
void
eline (double xin,double yin,
double* X, double* Y,double* Q, const int N){

const double step =0.01;

const double max_dist=20.0;

int i, direction;

double x0,y0;

double rmin,rmax,r,dx,dy,dl;
double Ex,Ey.E;

cout.precision(17);
for(direction=—1;direction<=1;direction+=2){

dl = direction * step;
x0 = xin;
yO = yin;
dx = 0.0;
dy = 0.0;

mdist(x0,y0,X,Y,N,rmin, rmax) ;
while (rmin > (2.0*step) && rmax < max_dist) {
cout << x0 <K 7 7 KL y0 KL '\n’;
//We evaluate the E-field at the midpoint:
// This reduces systematic errors
efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey);
E = sqrt(Ex*Ex+Ey*Ey);
if(E <= 1.0e—10) break;
dx = d1*Ex/E;
dy d1*Ey/E;
x0 x0 + dx;
yoO = y0 + dy;
mdist(xO,yO,X,Y,N,rmin,rmax);
}// while (rmin > (2.0*step) && rmax < max_dist)
}//for(direction=—1;direction <=1;direction+=2)
}//eline ()
/]
void
efield(double x0, double yO,
double* X, double* Y, double* Q, const int N,
double& Ex,double& Ey){
int i;
double r3,xi,yi;
Ex = 0.0;

7.4.

THE PROGRAM - CONCLUSION

Ey = 0.0;
for (i=0;i<N;i++){
xi = x0-X[i];
yi = yOo-Y[i];
r3 = pow(xi*xi+yi*yi,—1.5);
Ex = Ex + Q[i]*xi*r3;
Ey = Ey + Q[i]*yi*r3;
}
}// efield ()
//
void
mdist (double x0, double yo,
double* X, double* Y, const int N,
double& rmin,double& rmax){
int i;
double r;
rmax = 0.0;
rmin = 1000.0;

for (i=0;i<N;i++){

r = sqrt ((x0-X[i]) *(x0-X[i]) + (yo—Y[i]) *(yO0—-Y[i]));

if (r > rmax) rmax = r;
if (r < rmin) rmin = r;
}
} // mdist ()

363

Then we list the contents of the file EPotential. cpp:

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
//
void
epotline(double xin,double yin,
double* X, double* Y,double* Q, const int N);
void
efield (double x0, double yo,
double* X,double* Y,double* Q, const int N,
double& Ex,double& Ey);
void
mdist (double x0,double yo,
double* X, double* Y, const int N,

364 CHAPTER 7. ELECTROSTATICS

double& rm,double& rM);
/]

int main() {
string buf;

const int P = 20; //max number of charges
double X[P], Y[P], Q[P];
int N;
int i,j,nd;
double x0,y0,rmin, rmax,L;
// SET CHARGE DISTRIBUTION ——
cout << 7# Enter number of charges:” << endl;
cin >> N; getline(cin,buf);
cout <K "# N= 7 <K<K N < endl;
for (i=0;i<N;i++){
cout < 7# Charge: 7 < i+l << endl;
cout << ”# Position and charge: (X,Y,Q):” << endl;
cin >> X[i] >> Y[il] >> Qlil; getline(cin,buf);
cout << “# (X, Y)= "7
KL X[i] <7 7
K Y[i] 7 Q=7
<L Q[i] << endl;
}
// DRAWING LINES

//We draw lines passing through an equally
//spaced lattice of N=(2*nd+1)x(2*nd+1) points
//in the square —I<= x <= L, —I<= y <= L.
nd = 6; L = 1.0;
for (i=—nd;i<nd;i++)
for (j=—nd; j<=nd;j++){
x0 = i*(L/nd);
yo = j*(L/nd);
cout <K "# @ ”
KiK77<KjJKK 7 7KL L/nd L7
KL x0<KL 7T KL yo << endl;
mdist(x0,y0,X,Y,N,rmin, rmax);
//we avoid getting too close to a charge:
if (rmin > L/(nd*10)) epotline(x0,y0,X,Y,Q,N);
}
} //main ()

!/
void
epotline(double xin,double yin,
double* X,double* Y,double* Q, const int N){
const double step =0.02;
const double max_dist=20.0;

7.4. THE PROGRAM - CONCLUSION 365

int i

double x0,y0;
double r,dx,dy,dl;
double Ex,Ey.E;

cout.precision(17);

dl = step;
x0 = xin;
yO = yin;
dx = 0.0;
dy = 0.0;
r = step;

while(r > (0.9*dl) && r < max_dist){
cout << x0 << 7 7 KL y0 K "\n’;
//We evaluate the E-field at the midpoint:
// This reduces systematic errors
efield(x0+0.5*%dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey);

E = sqrt(Ex*Ex+Ey*Ey);

if(E <= 1.0e—10) break;

dx = dl*Ey/E;

dy = —d1*Ex/E;

x0 = x0 + dx;

yoO = yO0 + dy;

r = sqrt((x0—xin)*(x0—xin)+(y0—yin) *(y0—yin));
} // while ()

}// epotline ()

where . .. are the functions efield and mdist which are identical to the
ones in the file ELines. cpp.
In order to compile the program use the commands:

> g++ ELines.cpp —o el
> g++ EPotential.cpp —o ep

Then, edit a file and name it e.g. Input and write the data that define a
charge distribution. For example:

4 N: Number of charges
1 1 —1 (X,Y.Q): Position and charge
—1 1 1 (X,Y.,Q): Position and charge
1 —1 1 (X,Y,Q): Position and charge

- -1 —1 (X,Y,Q): Position and charge

366 CHAPTER 7. ELECTROSTATICS

The results are obtained with the commands:

> ./el < Input > el.dat

> ./ep < Input > ep.dat

> gnuplot

gnuplot> plot “el.dat” with dots
gnuplot> plot “ep.dat” with dots

Have fun!

7.5 Electrostatic Field in the Vacuum

Consider a time independent electric field in an area of space which is
empty of electric charge. Maxwell’s equations are reduced to Gauss’s law

L 0E, OFE, OF.,
V-E(x,y,z2) = B + a;—%— P =0, (7.8)

together with the equation that defines the electrostatic potentialﬁ

Equations (7.8) and (7.9) give the Laplace equation for the function
V(z,y, 2):
5 o’V 9*V 9PV
VIV (z,y,2) = 5z T e +t5E = 0. (7.10)

The solution of the equation above is a boundary value problem: We
are looking for the potential V(z,y, z) in a region of space S bounded
by a closed surface dS. When the potential is known on dS the solution
to (7.10) is unique and the potential and the electric field is determined
everywhere in S.

For simplicity consider the problem confined on a plane, therefore
V = V(z,y). In this case the last term in equation (7.10) vanishes, the
region S is a compact subset of the plane and JS is a closed curve.

For the numerical solution of the problem, we approximate S by a
discrete, square lattice. The potential is defined on the N sites of the
lattice. We take S to be bounded by a square with sides of length [. The

"Equivalent to the equation V x E = 0.

7.5. ELECTROSTATIC FIELD IN THE VACUUM 367

distance between the nearest lattice points is called the lattice constant
a. Then | = (L — 1)a, where L = /N is the number of lattice points
on each side of the square. The continuous solution is approximated by
the solution on the lattice, and the approximation becomes exact in the
N — oo and a — 0 limits, so that the length [= (L —1)a remains constant.
The curve JS is approximated by the lattice sites that are located on the
perimeter of the square and the loci in the square where the potential
takes constant values. This is a simple model of a set of conducting
surfaces (points where V' = const. # 0) in a compact region whose
boundary is grounded (points where V' = 0). An example is depicted in

figure 7.6.

000 00000OCOGDOGCOGEOSOSGTS
| HONORONONORONCHONONONONCORONON
| HONOROROHORONONONONONONORONON
| HONONONONONONONONONCHNONCORONON
| HONONONONONONONONONONONCORONON
e 0000000000 OO0
| HONONONONONONONONONCHNONCORONON
| HONONONONONONONONONONONCORONON
' JONONONONONONONONONGHONONONON)
@ O O0OO0OO0OO0OOOOOO OO0 e
e 00O 0C 0000000 OO0
| HONONONONONONONONONONONCORONON
| HONORONONONONCHONONONONCORONON
| HONONONONONONONONONCHNONCONONON
| HONONONONONONONONONONONCONONON
000 00000OCOCDOGCOGEOSOSGS

Figure 7.6: A lattice which corresponds to a cross section of two parallel conducting
planes inside a grounded cubic box. The black lattice sites are the points of constant,
fixed potential whereas the white ones are sites in the vacuum.

In order to derive a finite difference equation which approximates
equation (7.10), we Taylor expand around a point (z, y) according to the

368 CHAPTER 7. ELECTROSTATICS

equations:

ov 10°V 9
Viz+dz,y) = Vix,y)+ %ch 52 (0z)* +

ov 10°V 9

ov 10°V 9
Viz,y+dy) = V(z,y)+ 8_y§y + §a—y2(5y) +...

ov 10?V 9
V(x,y—&y) - V(m,y)—a—y5y+§a—yg(5y) 4+ ...

By summing both sides of the above equations, taking dz = dy and
ignoring the terms implied by ..., we obtain

V(z 4+ dz,y) + V(e —dz,y) + V(r,y + dy) + V(x,y — dy)
o’V 0%V
=4V (x,y) + (527)%@ + a—yz) + ...

~ 4V (2,y), (7.1)

The second term in the second line was eliminated by using equation
@.10.

We map the coordinates of the lattice points to integers (i, j) such that
z; = (i—1)aand y; = (j—1)a where ¢,j = 1,..., L. By taking 0z = dy = a
so that z; £ dz =z, a = (i —1+£1)a = 2,41 and y; £ 0y = y; £ a =
(j — 1+ 1)a = y;+1, equation (7.11) becomes:

Vi, j) = i(vu N HVEEL) AV)4V 4+ 1). (742

The equation above states that the potential at the position (i, 7) is the
arithmetic mean of the potential of the nearest neighbors. We will de-
scribe an algorithm which belongs to the class of “successive overrelax-
ation methods” (SOR) whose basic steps are:

1. Set the size L of the square lattice.

2. Flag the sites that correspond to “conductors”, i.e. the sites where
the potential remains fixed to the boundary conditions values.

7.5. ELECTROSTATIC FIELD IN THE VACUUM 369

3. Choose an initial trial function for V(z,y) on the vacuum sites. Of
course it is not the solution we are looking for. A good choice will
lead to fast convergence of the algorithm to the true solution. A
bad choice may lead to slow convergence, no convergence or even
convergence to the wrong solution. In our case the problem is easy
and the simple choice V' (z,y) = 0 will do.

4. Sweep the lattice and enforce equation ([7.12) on each visited vacuum
site. This defines the new value of the potential at this site.

5. Sweep the lattice repeatedly until two successive sweeps result in a
very small change in the function V(z,y).

A careful study of the above algorithm requires to test different criteria of
“very small change” and test that different choices of the initial function
V(z,y) result in the same solution.

We write a program that implements this algorithm in the case of a
system which is the projection of two parallel conducting planes inside
a grounded cubic box on the plane. The lattice is depicted in figure 7.6,
where the black dots correspond to the conductors. All the points of
the box have V' = 0 and the two conductors are at constant potential
Vi and V; respectively. The user enters the values V; and V5, the lattice
size L and the required accuracy interactively. The latter is determined
by a small number e. The convergence criterion that we set is that the
maximum difference between the values of the potential between two
successive sweeps should be less than e.

The data structure is very simple. We use an array double V[L] [L]
in order to store the values of the potential at each lattice site. A logical
array bool isConductor[L][L] flags each site as a “conductor site” (=
true) or as a “vacuum site” (=false). Both arrays are put in the global
scope and are accessible by all functions.

The main program reads in the data entered by the user and then
calls three functions:

1. initialize lattice(V1,V2):
The routine needs at its input the values of the potential V1 and V2
on the left and right plate respectively. On exit it provides the initial
values of the potential V[L] [L] and the flags isConductor[L] [L].
The geometry of the setting is hard coded and the user needs to

370 CHAPTER 7. ELECTROSTATICS

change this function each time that she wants to study a different
geometry.

2. laplace(epsilon):
This is the heart of the program. On entry we provide the desired
accuracy epsilon. On exit we obtain the final solution V[L] [L].
This function calculates the arithmetic mean of the potential of the
nearest neighbors Vav and the value V[i] [j]=Vav is changed im-
mediatelyfl. The maximum change in the new value of the potential
Vav from the old one V[i] [j] is stored in the variable error. When
error becomes smaller than epsilon we assume that convergence
has been achieved.

3. print_results():
This function prints the potential V[L] [L] to the file data. Each line
contains the integers i, j and the value of the potential V[i] [j].
We note that each time that the index i changes, the function prints
an extra empty line. This is done so that the output can be read
easily by the three dimensional plotting function splot of gnuplot.

The full program is listed below:

//**

//PROGRAM LAPLACE_EM

//Computes the electrostatic potential around conductors.
//The computation is performed on a square lattice of linear
// dimension L. A relaxation method is used to converge to the
// solution of Laplace equation for the potential.

//DATA STRUCTURE:

//double V[L][L]: Value of the potential on the lattice sites
//bool isConductor[L]J[L]: If true site has fixed potential
// I[f false site is empty space

// double epsilon: Determines the accuracy of the solution

// The maximum difference of the potential on each site
//between two consecutive sweeps should be less than epsilon.
//PROGRAM STRUCTURE

//main program:

// . Data Input

*A different choice would have been to store the value Vav in a temporary array
Vnew[i] [j]. After the sweep, the potential V[i] [j1=Vnew[i] [j] is changed to the new
values. Which method do you expect to have better convergence properties? Try...

7.5. ELECTROSTATIC FIELD IN THE VACUUM 371

// . call functions for initialization , computation and
// printing of results

// function initialize lattice:

// . Initilization of V[L][L] and isConductor[L][L]

// function laplace:

// . Solves laplace equation using a relaxation method
// function print_results:

// . Prints results for V[L][L] in a file. Uses format

[/ compatible with splot of gnuplot.
//**
#include <iostream >

#include <fstream >

#include <cstdlib >

#include <string>

#include <cmath>

using namespace std;

//
const int L = 31;

bool isConductor[L][L];

double V [L1[LT;
//
void initialize lattice(const double& V1,const double& V2);
void laplace (const double& epsilon);
void print_results O;
[/
int main(){
string buf;

double V1,V2,epsilon;

cout < ”Enter V1,V2:” << endl;
cin >> V1 >> V2; getline(cin,buf);
cout <K “Enter epsilon:” << endl;
cin >> epsilon; getline(cin,buf);
cout <K ”Starting Laplace:” << endl;
cout < 7Grid Size= 7 <K L <K endl;
cout << ”Conductors set at Vi= 7 < V1

L 7 V=" <L V2 KL endl;

2

cout <K ”Relaxing with accuracy epsilon=
<L epsilon <K endl;

//The arrays V and isConductor are initialized

initialize_lattice(V1,V2);

//On entry, V,isConductor is initialized.

//On exit the routine gives the solution V

laplace(epsilon);

//We print V in a file.

372 CHAPTER 7. ELECTROSTATICS

print_results();
} // main ()
//**
//function initialize lattice
//Initializes arrays V[L][L] and isConductor[L][L].
//VIL][L]= 0.0 and isConductor[L][L]= false by default
//isConductor[i][j]= true on boundary of lattice where V=0
//isConductor[i][j]= true on sites with i= L/3+1,5<=j<= L-5
//isConductor[i][j]= true on sites with i=2*L/3+1,5<{=j<= L-5

//VIil[j] = V1 on all sites with i= L/3+1,6<=j<= L-5
/IVIil[j] = V2 on all sites with i=2*L/3+1,56<=j<= L-5
//VIillj]l = 0 on boundary (i=1,L and j=1,L)

//V[il[j] = 0 on interior sites with isConductor[i][j]=false
//INPUT:

//integer L: Linear size of lattice

// double V1,V2: Values of potential on interior conductors
//OUTPUT:

// double V[L][L]: Array provided by user. Values of potential
// bool isConductor [L][L]: If true site has fixed potential
/] If false site is empty space

// 3k 3k sk ok sk sk sk sk sk sk ok k

void initialize lattice(const double& V1i,const double& V2) {

// Initialize to 0 and false (default values for
//boundary and interior sites).
for(int i=0;i<L;i++)
for(int j=0;j<L;j++){
v 1115 1
isConductor[i][j |
}
//We set the boundary to be a conductor: (V=0 by default)
for(int i=0;i<L;i++){

0.0;
false ;

isConductor[0 J[i] = true;
isConductor[i][0] = true;
isConductor[L—1][i] = true;
isConductor[i |[L—-1] = true;

}

//We set two conductors at given potential V1 and V2
for(int i=4;i<L—5;i++)]{

v [L/3][i] = Vvi1;
isConductor|[L/3][i] = true;
v [2*L/3][i] = V2;
isConductor[2*L/3][i] = true;

}

}//initialize lattice ()

7.5. ELECTROSTATIC FIELD IN THE VACUUM 373

// sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk ok ok

//function laplace
//Uses a relaxation method to compute the solution of the
// Laplace equation for the electrostatic potential on a
//2 dimensional squarelattice of linear size L.
// At every sweep of the lattice we compute the average
//Vav of the potential at each site (i,j) and we immediately
//update V[i][j]
//The computation continues until Max |Vav—V[i][j]l < epsilon
//INPUT:
//integer L: Linear size of lattice
// double V[L][L]: Value of the potential at each site
// bool isConductor[L][L]: If true potential is fixed
[/ If false potential is updated
// double epsilon: if Max |Vav—V[i][j]l < epsilon return to
// callingprogram .
//OUTPUT:
// double V[L][L]: The computed solution for the potential
//**
void laplace (const double& epsilon) {

int icount;

double Vav,error,dV;

icount = O0;
while (icount < 10000){
icount++;
error = 0.0;
for(int i = 1;i<L—1;i++){
for(int j = 1;j<L—1;j++){
//We change V only for non conductors:
if (! isConductor[i][j]){
Vav = 0.25*(V[i—1][jI1+V[i+11[j1+V[il[j—1]1+V[i][j+1D;
dvV = abs(V[i][j]—Vav);
if (error < dV) error = dV; //maximum error
VIil[j] = Vav;
}//if C ! isConductor[i][j1)
}//for(int j = 1;j<L—1;j++)
}//for(int i = 1;i<L—1;i++)
cout << icount <K 7 err= 7 < error <K endl ;
if (error < epsilon) return;
} // while (icount < 10000)
cerr <K "Warning: laplace did not converge.\n”;
}//laplace O)

// 3k ok sk sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok ok ok ok ok sk sk sk ok ok ok

//function print_results

374 CHAPTER 7. ELECTROSTATICS

// Prints the array V[L][L] in file “data”
// The format of the output is appropriate for the splot
//function of gnuplot: Each time i changes an empty line
// is printed.
//**
void print_results () {
ofstream myfile(”data”);
myfile.precision(16);
for(int i = 0; i < L ; i++)]{
for(int j = 0; j <L ; j++){
myfile << i+l << 7 7 << 4l << 77 <K V[11[3] << endl;
}
//print empty line for gnuplot, separate isolines:
myfile < << endl;
}
myfile.close();
}//print_results ()

7.6 Results

The program in the previous section is written in the file LaplaceEq. cpp.
Compiling and running is done with the commands:

> g++ LaplaceEq.cpp —o 1f

> . /1f

Enter V1,V2:

100 —100

Enter epsilon:

0.01

Starting Laplace:

Grid Size= 31

Conductors set at Vi= 100 v2= —100
Relaxing with accuracy epsilon= 0.01
1 err= 33.3333

2 err= 14.8148

3 err= 9.87654

110 err= 0.0106861

111 err= 0.0101182

112 err= 0.00958049

7.7. POISSON EQUATION 375

In the example above, the program performs 112 sweeps until the error
becomes 0.00958 < 0.01. The results are stored in the file data. We can
make a three dimensional plot of the function V' (i, j) with the gnuplot
commands:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> set size ratio 1
gnuplot> splot “data” with lines

The results are shown in figure 7.7

"data"

100

50

-50

-50
-100

-100

Figure 7.7: The solution of the equation (7.10) computed by the program
LaplaceEq.cpp for L= 31, V1=100, V2=-100, epsilon=0.01.

7.7 Poisson Equation

This section contains a short discussion of the case where the space is
filled with a continuous static charge distribution given by the charge

376 CHAPTER 7. ELECTROSTATICS

density function p(7). In this case the Laplace equation becomes the
Poisson equation:
o’V 9V 9PV

VIV =t o7 T gz~ Ay) (7.43)

The equation on the lattice becomes

V(i,j) = ;l(V(i—1,j)+V(z’+1,j)+V(z’,j—1)+V(i,j+1)+,5(i,j)), (7.14)

wheref] 5(, j) = 4ma2p(i, 7).

"data”

800
700
600
500
400
300
200
100

800
700
600
500
400
300
200
100

e

Figure 7.8: The solution of the equation (7.13) by the program in the file Poisson. cpp
for L= 51, V= 0 on the boundary and the charge 47Q = 1000 all concentrated at one
point.

The program in the file PoissonEq. cpp solves equation (7.14) for a
uniform charge distribution (figure [7.10), where we have set a = 1. The
reader is asked to reproduce this figure together with figures [f.§ and

7.9

Since Q = [pdA~ 3, pa® = (1/4m) 3, ; p. Therefore 3=, . p ~ 47rQ.

7.7. POISSON EQUATION 377

"data"

350
350 300
300
250 250
200 200
150 150
100 100

50 50

Figure 7.9: The solution of equation (7.13) by the program in the file Poisson.cpp
for L= 51, V= 0 on the boundary and the charge 47() = 1000 uniformly distributed in
a small square with sides made of 10 lattice sites.

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
//
const int L = 51;

bool isConductor[L][L];

double Vv [LI[L];
double rho [L]I[L];
/]

void initialize lattice(const double& V1,const double& V2,
const double& V3,const double& V4,
const double& Q);

void laplace (const double& epsilon);

void print_results 0;

/1

378 CHAPTER 7. ELECTROSTATICS

"data”

80
70
60
50
40
30
20
10

Figure 7.10: The solution of equation (7.13) by the program in the file Poisson.cpp
for L= 51, V= 0 on the boundary and the charge 47() = 1000 uniformly distributed on
all internal lattice sites.

int main() {
string buf;
double V1,V2,V3,V4,Q,epsilon;

cout < “Enter V1,V2,V3,V4:” << endl;
cin >> V1 >> V2 >> V3 >> V4; getline(cin,buf);
cout < "Enter 4*PI*Q:”;

cin >> Q; getline(cin,buf);
cout <K “Enter epsilon:” << endl;
cin >> epsilon; getline(cin,buf);
cout << ”Starting Laplace:” << endl;
cout << ”Grid Size= "~ <K L <K endl;
cout <K ”Conductors set at Vi= 7 < V1

L 7 V2= <KL V2

L7 V3= KL V3

<KL 7 Va= 7 <KL V4

KLK”7Q=" <K Q <L endl;

2

cout << "Relaxing with accuracy epsilon=
< epsilon << endl;

7.7. POISSON EQUATION 379

initialize lattice(V1,V2,V3,V4,Q);
laplace(epsilon);
print_results();

} //main ()
// sk sk sk sk sk sk sk sk skosk sk sk oskosk sk sk oskosk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk skosk sk sk oskosk sk sk oskosk sk sk oskosk sk sk skosk sk ok skosk ok ok
void initialize_lattice(const double& V1, const double& V2,
const double& V3, const double& V4,
const double& Q){
int L1,L2;
double Area;
// Initialize to 0 and .FALSE (default values
// for boundary and interior sites).
for(int i=0;i<L;i++)
for(int j=0;j<L;j++){

v [i][j 1 = 0.0;
isConductor[i][j] = false;
rho [i]l[j 1 = 0.0;

}
//We set the boundary to be a conductor: (V=0 by default)

for(int i=0;i<L;i++)]{

isConductor[0]J[i | = true;
isConductor[i [[0 | = true;
isConductor[L—1][i] = true;
isConductor[i [J[L—1] = true;
v [0 1[i] = Vvi;
v [i][L-—-1] = Vv2;
Vv [L—1][i] = V3;
v [i 1[0] = v4;

}

//We set the points with non—zero charge

//A uniform distribution at a center square

L1 = (L/2) — 5;

L2 = (L/2) + 5;

if (L1< 0){cerr <<”Array out of bounds. L1< 0\n”;exit(1);}
if (L2>=L){cerr <<”Array out of bounds. L2>=0\n";exit(1);}
Area = (L2-L1+1)*(L2-L1+1);

for(int i=L1;i<=L2;i++)
for(int j=L1;j<=L2;j++)
rho[i][j] = Q/Area;

380 CHAPTER 7. ELECTROSTATICS

}//initialize_lattice ()
//**
void laplace (const double& epsilon) {

int icount;

double Vav,error,dvV;

icount = 0;
while (icount < 10000){
icount++;
error = 0.0;
for(int i 1;i<L—1;i++){
for(int j = 1;j<L—1;j++){
//We change V only for non conductors:
if (! isConductor[i][j]){
Vav = 0.25*(V[i—A1[j1+V[i+1][j]1+VIiI[j—11+V[il[j+1]
+rho[il[j1);
dv = abs(V[i][jl-Vav);
if (error < dV) error = dV; //maximum error
VIil[j] = Vav;
}//itC ! isConductor[il[j])
}//for(int j = 1;j<L—1;j++)
Y //for(int i = 1;i<L—1;i++)
cout << icount < 7 err= 7 < error << endl ;
if (error < epsilon) return;
} // while (icount < 10000)
cerr < "Warning: laplace did not converge.\n”;
}//laplace ()

//>X<>X<*****************>X<**

void print_results () {
ofstream myfile(”data”);
myfile.precision(16);
for(int i = 0; i < L ; i++){
for(Cint j = 0; j < L ; j++){
myfile << i+l <K 7 7 KL j+1 K7 7 KL V[i][j] << endl;
}
//print empty line for gnuplot, separate isolines:
myfile L 7z << endl;
}
myfile.close();
}//print_results ()

In the bibliography the algorithm described above is called the Gauss—
Seidel method. In this method, the right hand side of equation (7.14)
uses the updated values of the potential in the calculation of V' (i, j) and
V(i,j) is immediately updated. In contrast, the Jacobi method uses the

7.7. POISSON EQUATION 381

old values of the potential in the right hand side of (7.14) and the new
value computed is stored in order to be used in the next sweep. The
Gauss—Seidel method is superior to the Jacobi method as far as speed of
convergence is concerned. We can generalize Jacobi’s method by defining

the residual R;; of equation (f7.14)

Rij=V(i+17)+V(i-1j)+V(j+1)+V(j—1)—4V(i,j)+ (i, J),

(7.15)
which vanishes when V (4, j) is a solution of equation (7.14). Then, using
R; ;, Jacobi’s method can be formulated as

VO (i, §) = VI (i,) + iR;’;) : (7.16)

where the quantities with index (n) refer to the values of the potential
during the n-th sweep. The successive overrelaxation (SOR) method is
given by:
w
4
When w < 1 we have “underrelaxation” and we obtain slower conver-
gence than the Jacobi method. When 1 < w < 2 we have “overrelaxation”
and an appropriate choice of w can lead to an improvement compared
to the Jacobi method. When w > 2 SOR diverges. Further study of the
SOR methods is left as an exercise to the reader.

Ve (i, j) = VO,) + < R (7.17)

382 CHAPTER 7. ELECTROSTATICS

7.8 Problems

7.1 Reproduce the figures with the electric field lines and equipotential
lines shown in section .

7.2 Take the charge distributions that you used in the previous prob-
lems, make all the charges to be positive and remake the figures of
the field lines and the equipotential lines. Then repeat by taking
half of the charges to be twice in magnitude than the others.

7.3 The program ELines.cpp gets stuck when you apply it on a charge
distribution of four equal charges located at the vertices of a square.
How can you correct this pathology?

7.4 Make the necessary changes to the program in the file ELines. cpp so
that the number of field lines starting near a charge ¢ is proportional
to q.

7.5 Improve the program in EPotential.cpp so that the equipotential
lines are drawn with a density proportional to the magnitude of the
electric field.

Hint:

(a) Write a subroutine that calculates the potential V' (x,y) at the
point (z,y).
(b) From each point charge draw a line in the radial direction and

calculate the potential on points that are at small distance Al
from each other.

(c¢) Calculate the maximum/minimum value of the potential V,,../Vinin
and use them in order to choose the values of the potential
on the equipotential lines that you plan to draw. If e.g. you
choose to draw 5 equipotential lines, take 6V = (Vi00 — Vinin) /4
and V;, =V,,;, + 160V 1 =0,...,4.

(d) Repeat the second step. When the potential at a point takes
approximately one of the values V; chosen in the previous step,
draw an equipotential line from that point.

7.6 Compute the electric potential using the program in the file LaplaceEq.
cpp for

7.8. PROBLEMS 383

(a) L= 31, V1=100, V2=100
(b) L= 31, V1=100, V2=0

and construct the corresponding plot for V (3, j).

7.7 Compute the electric potential using the program in the file LaplaceEq.
cpp for

(a) V1=100, V2=100
(b) V1=100, V2=100
(¢) V1=100, V2=0

for L=31,61,121,241,501 and construct the corresponding plot for
V(i,j). Vary epsilon=0.1, 0.01, 0.001, 0.0001, 0.00001,
0.000001. What is the dependence of the number of sweeps N
on epsilon? Make the plot of N(epsilon). Put the points and
curves of N(epsilon) for all values of L on the same plot.

7.8 Compute the electrostatic potential of a square conductor when the
potential on each side is V1, V2, V3, V4. Repeat what you did in
the previous problem for

(a) V1=10, V2=5, V3=10, V4= 5
(b) Vi=10, V2=0, V3=0, V4= -10
(c) V1=10, V2=0, V3=0, V4= 0

7.9 Compute the electrostatic potential of a system of square conductors
where the one is inside the other as shown in figure [.11. The side
of each conductor has L1, L2 sites respectively and the value of the
potential is V1,V2 respectively. Take L2= L1/5 and repeat the steps
in the previous problem for V1=10, V2=-10 and L1= 25, 50, 100,
200.

7.10 Perform a numerical computation of the capacitance C' = Q/V of
the system of conductors of the previous problem when V; =V,

Vo = —V. In order to calculate the charge (), compute the surface
charge density o using the equation
Ky,
o

:E’

384

7.11

7.12

CHAPTER 7. ELECTROSTATICS

00 000000OCOCOCDOCOGDOSNOTS
@ OO0OO0OO0OOO0OOOOLOOOOOL @
| HONOHONONONONCHONCNCNONCORONON
| HONOHONONONONCHONCNONONCONONON
| HONOHONONONONCHONCNONONONONON
| HONOCRONON N N N N N NONONONON _
| HONOHONON NONCHONCON NONCHONON
| HONOHONON NONCHONCON NONOCHONON
 JORONOCRON NONONONON NONCGHONON
| HONOHONON NONCHONCON NONOCHONON
| HONCHONON N N N N N NONCHONON
| HONOHONONONONCHONCNONONORONCN
@ OO0OO0OO0OOO0OOOOLOOOOO @
| HONOHONONONONCNONCNCNONCONONON
| HONOHONONONONCHONCNONONCONONON
00 00000006O0OC0O0COCDOCGCOCGS

Figure 7.11: The square conductors described in problem 7.9.

where E,, is the perpendicular component of the electric field on
the surface. Use the approximation

oV

En: — T
or

where §V is the potential difference between a point on the con-
ductor and its nearest neighbor. By integrating (i.e. summing)
you can estimate the total charge on each conductor. If these are
opposite and their absolute value is (), then the capacitance can be
calculated from the equation C' =)/V. Perform the calculation
described above for V = 10 and L1=25, 75.

In the system of the previous problem compute the function Q(V).
Verity that the capacitance is independent of V. Use L1=25,50, V1=
-v2 =1, 2, 5, 10, 15, 20, 25.

Reproduce figures 7.8, f.9 and [.10. Compare the result of the first
case with the known solution of a point charge in empty space.

7.8.

7.13

7.14

7.15

PROBLEMS 385

Introduce the lattice spacing a in the corresponding equations in the
program in the file PoissonEq.cpp. Set the length of each side to be
[=1 and print the results in the file data as (z;, y;, V (24, y;)) instead
of (i,7,V(i,j)). Take L=61,101,151,201,251 and plot V(z,y) in the
square 0 < z < 1, 0 < y < 1. Study the convergence of the solutions
by plotting the section V'(x,1/2) for each L.

Write a program that implements the SOR algorithm given by equa-
tion ([7.16) for the problem solved in LaplaceEq.cpp. Compare the
speed of convergence of SOR with that of the Gauss-Seidel method
for L = 51, w = 1.0, 0.9, 0.8, 0.6, 0.4, 0.2. What happens when
w > 1?7

Write a program that implements the SOR algorithm given by equa-
tion ([7.16) for the problem solved in PoissonEq.cpp. Compare the
speed of convergence of SOR with that of the Gauss-Seidel method
for L = 51, w = 1.0, 0.9, 0.8, 0.6, 0.4, 0.2. What happens when
w>1?

386 CHAPTER 7. ELECTROSTATICS

Chapter 8

Diffusion Equation

8.1 Introduction

The diffusion equation is related to the study of random walks. Consider
a particle moving on a line (one dimension) performing a random walk.
The motion is stochastic and the kernel

K(x,x0;t), (8.1)

is interpreted as the probability density to observe the particle at position
x at time ¢ if the particle is at xy at ¢ = 0. The equation that determines
K(x,xo;t) is
0K (z,w0;t) D O?K (z,z0;t)
ot B Oz ’

which is the diffusion equation. The coefficient D depends on the details
of the system that is studied. For example, for the Brownian motion of
a dust particle in a fluid which moves under the influence of random
collisions with the fluid particles, we have that D = kT'/v, where T is
the (absolute) temperature of the fluid, v is the friction coefﬁcient of the
particle in the fluid and k is the Boltzmann constant.

Usually the initial conditions are chosen so that at ¢ = 0 the particle
is localized at one point z, i.e.f

K(z,20;0) = 0(x — xp) . (8.3)

(8.2)

'For a spherical particle of radius R in a Newtonian liquid with viscosity 1 we have
that v = 67nR.
? §(x —) is the Dirac delta “function”. It can be defined from the requirement

387

388 CHAPTER 8. DIFFUSION EQUATION

The interpretation of K(z,z(;t) as a probability density implies that
for every t we should have that]

400
K(z,z0;t)dx = 1. (8.4)
It is not obvious that this relation can be imposed for every instant of
time. Even if K(z,z;t) is normalized so that (@) holds for ¢ = 0, the
time evolution of K (z, zo; t) is governed by equation (8.2) which can spoil
equation (8.4) at later times.
If we impose equation (8.4) at ¢ = 0, then it will hold at all times if

d [t
— K(z,zo;t)dz =0. (8.5)
dt | .
By taking into account that < [K (z,z;t)de = [*° %dm and
. 2 .
that 2& (gfo’t) — D2 Kéf:’fo’t) we obtain
d [t T 9 (0K (x,10;t)
— K ;t)de = D — | ———>)d
dt J_ (@, @o; t)dv /Oo 0$(oz) ’
_p 0K (z,z0;1t) D 0K (z, xo; 1) (8.6)

The above equation tells us that for functions for which the right hand
side vanishes, the normalization condition will be valid for all ¢ > 0.

A careful analysis of equation (8.2) gives that the asymptotic behavior
of K(z,x¢;t) for small times is

2
_lz=zol” o

K(z,xo;t) ~ et% Z ai(z,)t . (8.7
i=0

This relation shows that diffusion is isotropic (the same in all directions)
and that the probability of detecting the particle drops exponentially with

that for every function f(x) we have that fj:oo f(@)d(z — xo) dx = f(zg). Obviously we
also have that fj;: d(z — zp) de = 1. Intuitively one can think of it as a function that is
almost zero everywhere except in an infinitesimal neighborhood of zg.

*Alternatively, if K (z,xo;t) is interpreted as e.g. the mass density of a drop of ink
of mass m;,, inside a transparent liquid, we will have that fj;o K(x,x0;t) de = Mink
and K (z,20;0) = minpd(z — o).

8.2. HEAT CONDUCTION IN A THIN ROD 389

the distance squared from the initial position of the particle. This relation
cannot hold for all times, since for large enough times the probability of
detecting the particle will be the same everywheref.

The return probability of the particle to its initial position is

(e 9]

1)
PR(t) = K(ZL’(),.CL’O;t) ~ WZCLi(IO,xO)tZ. (88)

1=0

The above relation defines the spectral dimension d of space. d =1 in our
case.

The expectation value of the distance squared of the particle at time
t is easily calculated|]

(r?)y = ((x — 20))(t) = /_ Oo(x — 20)2K (2, 0;t) dx ~ 2Dt . (8.9)

o

This equation is very important. It tells us that the random walk (Brow-
nian motion) is not a classical motion but it can only be given a stochastic
description: A classical particle moving with constant velocity v so that
x — xo ~ vt results in r? ~ t2.

In the following sections we takefl D = 1 and define

u(z,t) = K(x — xo, x0; 1) . (8.10)

8.2 Heat Conduction in a Thin Rod

Consider a thin rod of length L and let 7T'(z,t) be the temperature dis-
tribution within the rod at time ¢. The two ends of the rod are kept at
constant temperature 7'(0,¢t) = T(L,t) = Ty. If the initial temperature
distribution in the rod is 7'(z,0), then the temperature distribution at all
times is determined by the diffusion equation

oT(x,t) 0*T(x,t)
5 = a2 (8.11)

‘Remember the analogy of an ink drop diffusing in a transparent liquid. After long
enough time, the ink is homogeneously dissolved in the liquid.
n+1

5]‘00 dr rne—rz/élDt — onp LH)(Dt)T
o .
*According to equation (B.2) this amounts to taking ¢ — Dt.

390 CHAPTER 8. DIFFUSION EQUATION

where a = k/(c,p) is the thermal diffusivity, £ is the thermal conductivity,
p is the density and c, is the specific heat of the rod.
Define
T(zL,2t) - Ty
To ’

where z € [0, 1]. The function u(z,t), giving the fraction of the tempera-
ture difference to the temperature at the ends of the rod, is dimensionless
and

u(z,t) = (8.12)

u(0,t) = u(1,t) = 0. (8.13)

These are called Dirichlet boundary conditions].

Equation (8.11) becomes
ou(z,t) O®u(w,t)

5 902 (8.14)
Equation (8.6) becomes
d ! ou ou
E . U<I,t)dl’ = % - — % Y (815)

The relation above cannot be equal to zero at all times due to the
boundary conditions (8.13). This can be easily understood with an ex-
ample. Suppose that

u(z,0) = sin(rz), (8.16)

then it is easy to confirm that the boundary conditions are satisfied and
that the function
2
u(r,t) = sin(rx)e ™ ', (8.17)

is the solution to the diffusion equation. It is easy to see that

! 2
/ u(z, t)dr = e ™"
0

™
drops exponentially with time and that
1

i J, w(z, t)de = —2me ™t

“If the derivative du/0x was given as a boundary condition instead, then we would
have Neumann boundary conditions.

8.3. DISCRETIZATION 391

which is in agreement with equations (8.15).

The exponential drop of the magnitude of u(z,t) is in agreement with
the expectation that the rod will have constant temperature at long times,
which will be equal to the temperature at its ends (lim;_, o, u(x,t) = 0).

8.3 Discretization

The numerical solution of equation (8.14) will be computed in the interval
xz € [0,1] for t € [0,¢;]. The problem will be defined on a two dimensional
discrete lattice and the differential equation will be approximated by finite
difference equations.

The lattice is defined by N, spatial points z; € [0, 1]

r,=0+0G—1DAx i=1,...,N,, (8.18)

where the N, — 1 intervals have the same width

Ax = N1 (8.19)
and by the N, time points ¢; € [0, ¢/]
ti=04+G—-1DAt j=1,...,]N;, (8.20)
where the N, — 1 time intervals have the same duration
ty —0
At =]\J;t — (8.21)
We note that the ends of the intervals correspond to
r1=0, zy, =1, t1 =0, ty =t;. (8.22)

The function u(x,t) is approximated by its values on the N, x N; lattice
u,-’j = U((L’Z', t]> . (823)
The derivatives are replaced by the finite differences

ou(z,t) u(z,t; + At) —u(zy, t;) 1

~
~

T A7 =N (W1 — Uiy)

(8.24)

392 CHAPTER 8. DIFFUSION EQUATION
0*u(z, 1) u(w; + Ax, t;) — 2u(wy, ty) + u(x; — Ax,t))
oz (Ax)?

1
(AI)Q (uz’+1,j — 2u; 5 + ui—l,j) . (8.25)

Q

By equating both sides of the above relations according to (B8.14), we
obtain the dynamic evolution of u;; in time

At

(Az)? (i1, — 2w j + uimrj) - (8.26)

Ui jp1 = Ujj +
This is a one step iterative relation in time. This is very convenient,
because one does not need to store the values u; ; for all j in the computer
memory.

The second term (the “second derivative”) in (8.26) contains only the
nearest neighbors u;1;; of the lattice point u;; at a given time slice ;.
Therefore it can be used for all i = 2,..., N, — 1. The relations ()
are not needed for the points ¢ = 1 and ¢ = NV, since the values u;; =
up, ; = 0 are kept constant.

The parameter
At

o (8.27)
(Az)?
determines the time evolution in the algorithm. It is called the Courant
parameter and in order to have a time evolution without instabilities it

is necessary to have

At 1

This condition will be checked in our analysis empirically.

8.4 The Program

The fact that equation (B.26) is a one time step iterative relation, leads to
a substantial simplification of the structure of the program. Because of
this, at each time step, it is sufficient to store the values of the second term
(the “second derivative”) in one array. This array will be used in order
to update the values of u; ;. Therefore we will define only two arrays in
order to store the values u;; and At/(Ax)*(uj11; — 2u;; + u;—1 ;) at time
tj.

8.4. THE PROGRAM 393

nd.dat"

u(x,t)

cocooo0000R
HNWARUIOYN00WO

0
0.05
t 0.25 0.30.35 0.4 0

Figure 8.1: The function u(z,t) for Nx=10, Nt=100, tf= 0.4.

In the program listed below, the names of these arrays are u[P] and
d2udx2[P]. Some care must be exercised because of the array indexing
in C++. The data is stored in the array positions u[0] ... u[Nx-1] and
d2udx2[0] ... d2udx2[Nx-1] and the parameter P is taken large enough
so that Nx is always smaller than P.

The user enters the N, = Nx, N; =Nt and ¢; =tf interactively. The
values of Az, At and At/Az? = courant are calculated during the ini-
tialization.

On exit, we obtain the results in the file d. dat which contains (¢;, z;, u; ;)
in three columns. When a time slice is printed, the program prints an
empty line so that the output is easily read by the three dimensional
plotting function splot of gnuplot.

The program is in the file diffusion.cpp and is listed below:

//
// 1—dimensional Diffusion Equation with simple
// Dirichlet boundary conditions u(0,t)=u(1,t)=0
/] 0<= x <= 1 and 0= t <= tf

//

// We set initial condition u(x,t=0) that satisfies

394 CHAPTER 8. DIFFUSION EQUATION

// the given boundary conditions.

// Nx is the number of points in spatial lattice:
// x =0 + i*dx, i=0,...,Nx—1 and dx = (1—-0)/(Nx—1)
// Nt is the number of points in temporal lattice:

// t =0+ j*dt, j=0,...,Nt—1 and dt = (tf —0)/(Nt—1)

/]

// u(x,0) = sin(pi*x) tested against analytical solution
/] u(x,t) = sin(pi*x)*exp(—pi*pi*t)

/]

/]

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
/]
int main() {

const int P 100000;

const double PI = 2.0*atan2(1.0,0.0);

double u[P], d2udx2[P];

double t,x,dx,dt,tf,courant;

int Nx ,Nt,i,j;
string buf;
// Input:
cout << 7# Enter: Nx, Nt, tf: (P= 7 <« P

<< 7 Nx must be < P)” << endl;
cin >> Nx >> Nt >> tf; getline(cin,buf);
if (Nx >= P){cerr << ”Nx >= P\n”; exit (1) ;)
if (Nx <= 3){cerr << ”"Nx <= 3\n”; exit(1);}
if (Nt <= 2){cerr << ”"Nx <= 2\n”; exit(1);}
// Initialize :
dx = 1.0/(Nx —1);
dt = tf /(Nt —1);

courant= dt /(dx*dx);
cout << 7# 1d Diffusion Equation: 0<=x<=1, 0<=t<=tf\n”;
cout <K # dx= "7 K dx <K 7 dx= 7 KL dt

KL 7 tf= 7 KL tf << endl;
cout < 7# Nx= 7 << Nx < 7 Nit= 7 <K Nt < endl;
cout <K ”# Courant Number= ” << courant << endl;

if (courant > 0.5) cout << ”# WARNING: courant > 0.5\n”;
ofstream myfile(’d.dat”);

myfile.precision(17);

/]

// Initial condition at t=0

8.5. RESULTS 395

/] u(x,0) = sin(pi x)
for (i=0;i<Nx;i++){

X = i*dx;

uli] = sin(PI*x);
!
ul0] = 0.0;
u[Nx—1] = 0.0;
for (i=0;i<Nx;i++){

X = i*dx;

myfile << 0.0 << 7 7 K x K7 7 Lu[i] << "\n’;
}
myfile <KL 7 \n”;
!/
// Calculate time evolution:
for(j=1;j<Nt;j++){
t = j*dt;
// Second derivative:
for(i=1;i<Nx—1;i++)
d2udx2[i] = courant*(u[i+1]—2.0*u[i]+u[i—1]);
// Update:
for(i=1;i<Nx—1;i++)
uli] += d2udx2[i];
for (i=0;i<Nx;i++){
X = i*dx;
myfile << £t << 7 7 KL x K77 KLuli] KK \n’;
}
myfile <KL 7 \n”;
b//for (j=1;j<Nt;j++)
myfile.close();
} //main ()

8.5 Results

The compilation and running of the program can be done with the com-
mands:

gt+ diffusion.cpp —o d

echo 710 100 0.4 | ./d

Enter: Nx, Nt, tf: (P= 100000 Nx must be < P)
1d Diffusion Equation: 0<=x<=1, 0<=t<=tf

dx= 0.111111 dx= 0.0040404 tf= 0.4

Nx= 10 Nt= 100

HFH HF HVV

396 CHAPTER 8. DIFFUSION EQUATION

‘# Courant Number= 0.327273

The input to the program ./d is read from the stdin and it is given by
the stdout of the command echo through a pipe, as shown in the second
line in the listing above. The lines that follow are the standard output
stdout of the program.

The three dimensional plot of the function u(x,t) can be made with
the gnuplot commands:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> splot “d.dat” with lines
gnuplot> unset pm3d

In order to make the plot of u(z,t) for a fixed value of ¢ we first note that
an empty line in the file d.dat marks a change in time. The following
awk program counts the empty lines of d.dat and prints only the lines
when the number of empty lines that have been encountered so far is
equal to 3. The counter n=0, 1, ..., Nt-1 determines the value of
tj = tn—1. We save the results in the file tj which can be plotted with
gnuplot. We repeat as many times as we wish:

> awk 'NF<3{n++}n==3 {print}’ d.dat > tj
gnuplot> plot 7tj” using 2:3 with lines

29

The above task can be completed without creating the intermediate file
tj by using the awk filter within gnuplot. For example, the commands

gnuplot> ! echo 710 800 2” | ./d

gnuplot> plot "<awk 'NF<3{n++}n==3 {print}’ d.dat” u 2:3 w 1
gnuplot> replot “<awk 'NF<3{n++}n==6 {print}’ d.dat” u 2:3 w 1
gnuplot> replot “<awk ’'NF<3{n++}n==10 {print}’ d.dat” u 2:3 w 1
gnuplot> replot “<awk ’'NF<3{n++}n==20 {print}’ d.dat” u 2:3 w 1
gnuplot> replot “<awk ’'NF<3{n++}n==30 {print}’ d.dat” u 2:3 w 1
gnuplot> replot “<awk ’'NF<3{n++}n==50 {print}’ d.dat” u 2:3 w 1
gnuplot> replot “<awk ’'NF<3{n++}n==100{print}’ d.dat” u 2:3 w 1

run the program for Nx=10, Nt=800, tf= 2 and construct the plot in
figure @)

8.5. RESULTS 397

0.8 ,
0.7 ,

const)

05 //,// - B ‘\\\\ B

u(x,t=

0.3
0.2
0.1

X

Figure 8.2: The function u(z,t) for Nx=10, Nt=800, tf= 2 for different values of
the time ¢;,. We take j = 4,7,11,21,31,51,101 and observe that the function u(z,t)
decreases then j increases.

It is instructive to compare the results with the known solution u(x,t) =

. 2 .
sin(rz)e ™. We compute the relative error

ui,j — U(.ﬁlﬁ'i, t])
)

Ui,

which can be done within gnuplot with the commands:

gnuplot> du(x,y,z) = (z — sin(pi*x)*exp(—pi*pi*y))/z
gnuplot> plot "<awk 'NF<3{n++}n==2 ’ d.dat” u 2:(du($2,$1,$3))
gnuplot> plot "<awk ’NF<3{n++}n==6 d.dat” :(du(s$2.%$1,%$3))
gnuplot> plot “<awk ’NF<3{n++}n==20 d.dat” :(du($2,%1,%$3))
gnuplot> plot "<awk ’NF<3{n++}n==200" d.dat” :(du($2,%$1,%3))
) d
} d

N

)

s>

gnuplot> plot "<awk ’NF<3{n++}n==600" d.dat” :(du($2,%$1,$3))
gnuplot> plot "<awk ’NF<3{n++}n==780" d.dat” :(du($2,%$1,%$3))

[= = =
NN N NN

The results can be seen in figure [8.3.

398 CHAPTER 8. DIFFUSION EQUATION

01 ¢
. 0.01 - e
S ;]
o
(%
2
-
©
[
0.001 |- :
0.0001

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 8.3: The absolute value of the relative error of the numerical computation
for Nx=10, Nt=800, tf= 2 for different times t;. We take j = 3,7,21,201,601, 781 and
observe that the relative error increases with j.

8.6 Diffusion on the Circle

In order to study the kernel K (z,x¢;t) for the diffusion, or random walk,
problem, we should impose the normalization condition (8.4) for all
times. In the case of the function u(z,t) defined for x € [0,1] the re-
lation becomes

1
/ w(z,t)de =1. (8.29)
0

In order to maintain this relation at all times, it is necessary that the
right hand side of equation (8.15) is equal to 0. One way to impose
this condition is to study the diffusion problem on the circle. If we
parametrize the circle using the variable x € [0, 1], then the points z = 0
and z = 1 are identified and we obtain

w(0,1) = u(1,1), 8ué(;, b _ a“é:ln’ 2 (8.30)

The second relation in the above equations makes the right hand side
of equation (8.15) to vanish. Therefore if [u(z,0)dr = 1, we obtain

fol u(x,t)de =1, Vt > 0.

8.6. DIFFUSION ON THE CIRCLE 399

Using the above assumptions, the discretization of the differential
equation is done exactly as in the problem of heat conduction. Instead
of keeping the values u(0,t) = u(1,t) = 0, we apply equation (8.26) also
for the points z;, zn,. In order to take into account the cyclic topology
we take

At
Up jp1 = Ul + W ('LLQ’J' — 2’2],1’]' + UNI,J) s (831)
and At
UN, j+1 = Wij + W (U1 — 2un, j + un,—15) - (8.32)

since the neighbor to the right of the point zy, is the point x; and the
neighbor to the left of the point z; is the point xy,. For the rest of the
points i = 2,..., N, — 1 equation (8.26) is applied normally.

The program that implements the problem described above can be
found in the file diffusionS1.cpp. At a given time ¢;, the boundary
conditions (8.30) are enforced in the lines

for (i=0;i<Nx;i++){

nnr = i+1;

if (nnr > Nx—1) nnr = O;
nnl = i—1;

if (nnl < 0) nnl = Nx—1;

d2udx2[i] = courant*(u[nnr]—2.0*u[i]+ul[nnl]);

}

The initial conditions at ¢ = 0 are chosen so that the particle is located
at xy, /2. For each instant of time we perform measurements in order to
verify the equations (8.4) and (8.9) and the fact that lim,_, . u(z,t) =
const.

The variable prob = > 4, ; and we should check that its value is
conserved and is always equal to 1.

The variable r2 = Zf\fl (z; — xn,/2)*u;; is a discrete estimator of the
expectation value of the distance squared from the initial position. For
small enough times it should follow the law given by equation (8.9).

These variables are written to the file e.dat together with the values
UN,/2,j» UN,/4,; and uy ;. The latter are measured in order to check if for
large enough times they obtain the same constant value according to the
expectation lim;_, ., u(x,t) = const.

The full code is listed below:

400 CHAPTER 8. DIFFUSION EQUATION

// 1—dimensional Diffusion Equation with
// periodic boundary conditions u(0,t)=u(1,t)
/] 0<K= x <= 1 and 0= t <= tf

// We set initial condition u(x,t=0) that satisfies
// the given boundary conditions.

// Nx is the number of points in spatial lattice:
// x =0 + i*dx, i=0,...,Nx—1 and dx = (1-0)/(Nx—1)
// Nt is the number of points in temporal lattice:

// t =0+ j*dt, j=0,....,Nt—1 and dt = (tf—-0)/(Nt—1)
/1l

// u(x,0) = \delta_{x.0.5}

/1l

/1l

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
/]
int main() {

const int P = 100000;

const double PI = 2.0*atan2(1.0,0.0);

double u[P], d2udx2[P];

double t,x,dx,dt,tf,courant;

double prob,r2,x0;

int Nx,Nt,i,j,nnl,nnr;
string buf;
//Input:
cout << 7# Enter: Nx, Nt, tf: (P= 7 <« P

< 7 Nx must be < P)” << endl;
cin >> Nx >> Nt >> tf; getline(cin,buf);
if (Nx >= P){cerr << ”Nx >= P\n”; exit (1)}
if (Nx <= 3){cerr << "Nx <= 3\n”; exit(1);}
if (Nt <= 2){cerr << "Nx <= 2\n”; exit (1))
// Initialize :
dx = 1.0/(Nx —1);
dt = tf /(Nt —1);

courant= dt /(dx*dx);
cout << 7# 1d Diffusion Equation: 0<=x<=1, 0<=t<=tf\n”;
cout <K # dx= 7 K dx <K 7 dx= 7 KL dt
KL 77 tf= 7 KL tf << endl;
cout < "# Nx= 7 < Nx << 7 Nt= 7 < Nt << endl;

8.6. DIFFUSION ON THE CIRCLE 401

cout <K 7# Courant Number= 7 < courant << endl;
if (courant > 0.5) cout << 7# WARNING: courant > 0.5\n”;
ofstream myfile(”d.dat”);
myfile.precision(17);
ofstream efile (“e.dat”);
efile.precision(17);
/]
// Initial condition at t=0
for (i=0;i<Nx;i++){
X = i*dx;
uli] = 0.0;
}
u[Nx/2—-1] = 1.0;
for (i=0;i<Nx;i++){
X = i*dx;
myfile << 0.0 << 7 7 K x K7 7 KL ul[i] << "\n’;
}
myfile <KL 7 \n”;
/]
// Calculate time evolution:
for(j=1;j<Nt;j++){
t = j*dt;
// Second derivative:
for (i=0;i<Nx;i++){

nnr = i+1;

if (nnr > Nx—1) nnr = O;
nnl = i—1;

if (nnl < 0) nnl = Nx—1;

d2udx2[i] = courant*(u[nnr]—2.0*u[i]+u[nnl]) ;

}

// Update:

prob = 0.0;

r2 = 0.0;

x0 = ((Nx/2)—1)*dx; //original position

for (i=0;i<Nx;i++){

X = i*dx;

uli] += d2udx2[i];

prob += ul[il];

r2 += u[i]*(x—x0)*(x—x0) ;
}
for (i=0;i<Nx;i++){

X = i*dx;

myfile < t <K 7 7 K x K7 7 <KLul[i] <K "\n’;
}
myfile << 7 \n”;

402 CHAPTER 8. DIFFUSION EQUATION

efile << 7pu 7

Kt <L 7 7 KL prob LT
L r2 LT

KL ulWx/2-1] <K 7 7 KL ulNx/4-1] < 7 7
<L ul0] <K \n’y

Y// for (j=1;j<Nt;j++)
myfile.close();
efile.close ();

} //main ()

8.7 Analysis

For each moment of time, the program writes the following quantities to
the file e.dat:

Nw
Uj = Zui,j (833)
i=1

which is an estimator of (8.29) and we expect to obtain U; = 1 for all j,

N,
(1) = i (wi — a, 2)° (8.34)
=1

which is an estimator of (8.9) for which we expect to obtain
(r*); ~2t;, (8.35)

for small times as well as the values of uy, /2 ;, Un, /45, U1j.
The values of ¢;, U;, (r?);, UnN, /25> UN,/4,5» U1,; are found in columns 2,
3, 4, 5, 6 and 7 respectively of the file e.dat. The gnuplot commands

gnuplot> ! g++ diffusionSl.cpp —o d
gnuplot> ! echo 710 100 0.47 | ./d

compile and run the program within gnuplot. They set N, = 10, N; =
100, ty = 0.4, Az ~ 0.111, At ~ 4.0404, At/Az* ~ 0.327. The gnuplot
commands

gnuplot> plot “e.dat” u 2:5
gnuplot> replot “e.dat” u 2:6
gnuplot> replot “e.dat” u 2:7

= = =
TS

8.7. ANALYSIS 403

i \ \

0.12 =N, /2

- i=N,/4

~ i=1

0.1 - —

0.08 - B
0.06 - B
0.04 - .
0.02 il

0 ! ! ! ! | | |

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 8.4: The functions UN,/2,5> UN,/4,5» U1,j are given as a function of t; for
N, =10, N; = 100, t; = 0.4. We observe that for large times they are consistent with
uniform diffusion.

construct the plot in figure [8.4. We observe that for large times we obtain
uniform diffusion.

The relation U; = 1 can be easily confirmed by inspecting the values
recorded in the file e.dat.

The asymptotic relation (r?); ~ 2¢; can be confirmed with the com-
mands

gnuplot> plot [:][:0.11] “e.dat” u 2:4,2%x

which construct the plot in figure 8.5.
Finally we make a plot of the function u(x,t) with the commands

gnuplot> ! echo 710 100 0.16” | ./d
gnuplot> set pm3d
gnuplot> splot [0:0.16][0:1][0: 1] “d.dat”

w 1l
gnuplot> splot [0:0.16][0:1][0:.2] "d.dat” w 1

and the result is shown in figure 8.6.

404 CHAPTER 8. DIFFUSION EQUATION

I I I I I I I I |
0.1 F\H:H a
R
0.08 i .
+
+
+
0.06 + a
+
+
0.04 + —
+
Jr
0.02 a
+
+ <x?>()
2t
0 I | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 8.5: The expectation value (r?); as a function of ¢; for N, = 10, N, = 100,
t; = 0.4. For small values of ¢; we obtain (r?); ~ 2¢;. The solid line is the straight line
2t.

8.7. ANALYSIS 405

cooo0000000
OOOOR N
N N

'70.12

0.14 "d.dat" ——

0.16
Figure 8.6: The function u(z,t) for N, = 10, N; = 100, t; = 0.16. The second plot
differs only in the scale of the z axis so that we can easily see the details of the diffusion
away from the point zg = xy, /2 = 5.

406

CHAPTER 8. DIFFUSION EQUATION

8.8 Problems

8.1
8.2

8.3

Reproduce the results in figure [8.3.

The temperature distribution u(z,t) in a thin rod satisfies equation

(B.14) together with the boundary conditions (8.13) at the ends
x = 0,1. The initial temperature distribution at ¢ = 0 is given by

the function [|
] 0.5 7e|r, 2
u(@,0) = { 0.3 x ¢ [z, 2]

where 1 = 0.25 and x4 = 0.75.

(a) Calculate the temperature distribution u(z,t;) for t; = 0.0001,
0.001, 0.01, 0.05. Take N, = 100 and N; = 1000. Do the same
for t; = 0.1 by choosing appropriate N, and keeping N; = 1000.
Plot the functions u(z,t) in the same plot.

(b) Calculate the maximum value of the temperature graphically
for t; = 0.0001, 0.001, 0.01, 0.05, 0.1, 0.15, 0.25. Take N, = 100
and choose an appropriate value for the corresponding N;.

(c) Calculate the time at which the temperature of the rod becomes
everywhere less than 0.1.

Hint: Make your program print only the final temperature distri-
bution wu(z,ty).

The temperature distribution u(z,t) in a thin rod satisfies the equa-
tion

ou u

ot~ “or?
The temperature at the ends of the rod is u(0,t) = u(1,t) = 0, and
when t =0

_J05[1—cos(ZE)] 0<z<b
“(x’o){o " <<

(a) Calculate the temperature distribution u(z,t;) for a = 0.5, b =
0.09 and for t; = 0.0001, 0.001, 0.01, by taking N, = 300, N; =
1000. Do the same for t; = 0.05 by choosing appropriate N,.
Plot the functions u(z,t) in the same plot.

8.8. PROBLEMS 407

(b) Using the same parameters, calculate the time evolution of the
values of the temperature distribution at the points z; = 0.05,
29 = 0.50 and z3 = 0.95 for 0 < ¢ < 0.05. Plot the functions
u(r123,t) in the same plot.

(c) Calculate the temperature distribution u(z,ty) for b = 0.09 and
a = 5,2,1 for t; = 0.001. Plot the functions u(z,t;) in the
same plot. Comment on the effect of the parameter o on your
results.

8.4 The temperature distribution u(z, t) in a thin rod of length L satisfies

equation
ot dx? L oz’
4z /L

where D(x) = ae” is the z-dependent thermal diffusivity. The
temperature of the rod at its ends is such that u(0,¢) = u(L,t) = 0,
and at time ¢ = 0, the temperature distribution is

u(z,0) = Ce =L/

(a) Write a program where the user enters the parameters L, a, C,
o, Ny, N; and t; interactively. On exit, the program calculates
u(x,ts) and writes the points (z;,u(z;,tf)) in two columns to a
file d.dat.

(b) Run the program for L =4, a =0.2, C =1, 0 = 1/2, N, = 400,
N, = 20000 and calculate u(z,ts) for t; = 0.05,1.0,5.0. Plot the
functions u(z,ts) in the same plot.

(¢) Using the same parameters, calculate the time evolution of the
temperature distribution at the points z; = 1 and z, = 2 for
0 <t <5. Plot the functions u(z;2,t) in the same plot.

8.5 Reproduce the results shown in figures 8.4 and 8.5.

408 CHAPTER 8. DIFFUSION EQUATION

Chapter 9

The Anharmonic Oscillator

In this chapter we will use matrix methods in order to compute the
quantum mechanical energy spectrum of the anharmonic oscillator. This
problem cannot be solved exactly and one has to resort to perturbative or
other approximation methods. We will approach this problem numeri-
cally by representing the Hamiltonian H as a real symmetric matrix in an
appropriately chosen basis of the Hilbert space H of quantum mechani-
cal states. The energy spectrum is obtained from the eigenvalues of this
matrix and the numerical problem reduces to that of the diagonalization
of a real symmetric matrix. Since the Hamiltonian is represented in H
by an infinite size matrix, we have to restrict ourselves to a finite dimen-
sional subspace Hy of dimension N. In this space the Hamiltonian is
represented by an N x N real symmetric matrix. The eigenvalues of this
matrix will be calculated numerically using standard methods and the
energy eigenvalues will be obtained in the N — oo limit.

For the calculation of the eigenvalues we will use software that is
found in the well known library Lapack which contains high quality,
freely available, linear algebra software. Part of the goals of this chapter
is to show to the reader how to link her programs with software libraries.
In order to solve the same problem using Mathematica or Matlab see [42]
and [43] respectively.

409

410 CHAPTER 9. THE ANHARMONIC OSCILLATOR

9.1 Introduction

The Hamiltonian of the harmonic oscillator is given by

p2 1 2 2

Define the position and momentum scales zg = \/i/(mw), py = Vimw so
that we can express the above equation using dimensionless terms:
Hy 1/p 2 1 /z)\?
Sl A e — (=] . 9.2
hw 2(290) +2<5€0> ©-2

If we take the units of energy, distance and momentum to be hw, zy and

Po, then we obtain
1 1
HO = 5}?2 —I— EZL‘Q s (93)
where Hj, p and x are now dimensionless. The operator H, can be
diagonalized with the help of the creation and annihilation operators a

and a', defined by the relations:

1 i
— T - 1
r=—(a"+a =—(a"—a), (9.4)
\/5() p \/5()
or
1(x—|—z') al 1(x ip) (9.5)
a=— = —(z —1p), .
it il
which obey the commutation relation
[a,a'] =1, (9.6)
which leads to)
Hy =ala + 3 9.7

The eigenstates |n), n =0,1,2,... of Hy span the Hilbert space of states
‘H and satisfy the relations

a'lny =vn+1|n+1) aln) =+v/nln—1) al0) =0, (9.8)

therefore
a'aln) =n|n), (9.9

9.1. INTRODUCTION 411

and

1
Hy |n) = E, |n), E,=n+ 3 (9.10)

The position representation of the eigenstates |n) is given by the wave-

functions:
1

V 2mnl/T

where H,(x) are the Hermite polynomials.
From equations (9.4) and (9.§) we obtain

(@) = (zln) = e 2 H,(z), (9.11)

1
Lnm = <7’L| Zz |m> = E vm + 1 5n,m+1 + ﬁmén,m—l (912)
1

Pom = (n|p|m) = %\/m + 10nme1 — %M&Lm_l . (9.14)

From the above equations we can easily calculate the Hamiltonian of
the anharmonic oscillator

1

H(\) = Hy + M. (9.15)
The matrix elements of H in this representation are:

Hpm(N) = (0| HA) |m) = (n| Hy|m) + Xn|2*|m) (9.16)

S R () P CR)

where (z%),,, can be calculated from equation (9.12):

o0

($4)nm = Z mnhx’higxizigxigm . (9.18)

11,i2,i3=0

This relation computes the matrix elements of the matrix z! from the
matrix product of z with itself.

The problem of the calculation of the energy spectrum has now been
reduced to the problem of calculating the eigenvalues of the matrix H,,,.

412 CHAPTER 9. THE ANHARMONIC OSCILLATOR

9.2 Calculation of the Eigenvalues of H,,,(\)

We start by choosing the dimension NV of the subspace Hy of the Hilbert
space of states 7. We will restrict ourselves to states within this subspace
and we will use the N dimensional representation matrices of x, H, and
H(\) in Hy. For example, when N = 4 we obtain

1
(1) 5 0 0
5 0 1 0
0 0 /i oo
1000
o200
Ho=| o 2 - (9.20)
0001
1+ 0 3 0
0+ 0 3/h
H\) = o 04 5 02 (9.21)
V2 2 4
0 3y/3x 0 422

Our goal is to write a program that calculates the eigenvalues E,, (N, \)
of the N x N matrix H,,,(\). Instead of reinventing the wheel, we will
use ready made routines that calculate eigenvalues and eigenvectors of
matrices found in the Lapack library. This library can be found in the
high quality numerical software repository Netlib and more specifically
at http://www.netlib.org/lapack/. Documentation can be found at
http://www.netlib.org/lapack/lug/, but it is also easily accessible on-
line by a Google search or by using the man pagesf|. The programs have
been written in the Fortran programming language, therefore the reader
should review the discussion in Section @

As inexperienced users we will first look for driver routines that per-
form a diagonalization process. Since our task is to diagonalize a real

'The library can be easily installed in many Linux distributions. For example in
Ubuntu or other Debian like systems you may use the command apt-get install
liblapack3 liblapack-doc liblapack-dev.

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/lug/

9.2. CALCULATION OF THE EIGENVALUES OF Hyp () 413

symmetric matrix, we pick the subroutinef] DSYEV (D = double precision,
SY = symmetric, EV = eigenvalues with optional eigenvectors). If the
documentation of the library is installed in our system, we may use the
Linux man pages for accessing it:f

> man dsyev

From this page we learn how to use this subroutine:

SUBROUTINE DSYEV(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO)
CHARACTER JOBZ, UPLO

INTEGER INFO, LDA, LWORK, N
DOUBLE PRECISION A(LDA, *).w(*), WORK(*)
ARGUMENTS
JOBZ (input) CHARACTER*1
= ’N’: Compute eigenvalues only;
= ’V’: Compute eigenvalues and eigenvectors.

UPLO (input) CHARACTER*1

= ’U’: Upper triangle of A is stored;
= 'L’: Lower triangle of A is stored.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) DOUBLE PRECISION array, dimension (LDA, N¢

)
On entry, the symmetric matrix A. If UPLO = ’'U’, the
leading N-by—N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = ’'L’,
the leading N-by—N lower triangular part of A contains
the lower triangular part of the matrix A. On exit, if
JOBZ = ’V’, then if INFO = O, A contains
the orthonormal eigenvectors of the matrix A. If
JOBZ = ’N’, then on exit the lower triangle (if UPLO=’L+¢
")

or the upper triangle (if UPLO='U’) of A, including the
diagonal, is destroyed.
LDA (input) INTEGER

?A function of type void in Fortran, is called a subroutine.
’A Google search “dsyev” will easily take you to the same page.

414 CHAPTER 9. THE ANHARMONIC OSCILLATOR

The leading dimension of the array A. LDA >= max(1,N).

W (output) DOUBLE PRECISION array, dimension (N)
If INFO = O, the eigenvalues in ascending order.

WORK (workspace/output) DOUBLE PRECISION array, dimension
(LWORK) .
On exit, if INFO = O, WORK(1) returns the optimal LWORK.

LWORK (input) INTEGER
The 1length of the array WORK. LWORK >= max(1,3*N«+
—-1).
For optimal efficiency, LWORK >= (NB+2)*N, where NB is
the blocksize for DSYTRD returned by ILAENV.

If LWORK = —1, then a workspace query is assumed; the
routine only calculates the optimal size of the WORK
array, returns this value as the first entry of the
WORK array, and no error message related to LWORK is
issued by XERBLA.

INFO (output) INTEGER

= 0: successful exit
< 0: if INFO = —i, the i—th argument had an illegal <
value

> 0: if INFO = i, the algorithm failed to converge; <
i

off-diagonal elements of an intermediate tridiagonal

form did not converge to zero.

These originally cryptic pages contain all the necessary information and
the reader should familiarize herself with its format. For a quick and
dirty use of the routine, all we need to know is the types and usage of its
arguments. These are classified as “input”, “output” and “working space”
variables (some are in more than one classes). Input is the necessary data
that the routine needs in order to perform the computation. Output is
where the results of the computation are stored. And working space
is the memory provided by the user to the routine in order to store
intermediate results.

From the information above we learn that the matrix to be diagonal-
ized is A which is a rectangular matrix with the number of its rows and
columns < N. The number of rows LDA (LDA= “leading dimension of
A”) can be larger than N is which case DSYEV will diagonalize the upper

9.2. CALCULATION OF THE EIGENVALUES OF Hyp () 415

left NxN part of the matrix. In our program we define a large matrix
A[LDA] [LDA] and diagonalize a smaller submatrix A[N] [N]. This way we
can study many values of N using the same matrix. The subroutine can
be used in two ways:

e If JOBZ='N", it calculates only the eigenvalues of the matrix A [N] [N]
and stores them in the array W[N], sorted in ascending order. We
have to be careful because, upon return, the routine destroys the
lower (UPLO="U") or upper (UPLO="'L") triangular part of A. Be careful:
the documentation says the opposite, but I hope that you remember
from the discussion in Section that Fortran arrays are trans-
posed from the point of view of C++! Since A is symmetric, only
this part is needed by DSYEV. If we need to reuse the matrix A, we
have to make a backup copy before the call to DSYEV.

e If JOBZ='V"', it calculates both the eigenvalues and the eigenvectors
of the matrix A[N] [N]. The eigenvalues are stored in the array W[N]
as before, whereas the corresponding eigenvectors in the columns
of the matrix A[N] [N]. The eigenvectors are stored in the rows of
A[N] [N], i.e. the n-th eigenvector corresponding to the eigenvalue
A, =W[n-1] is v=A[n-1]. The eigenvectors are normalized to unity,
i.e. fo;év [m]*v[m]= 1. The matrix A[N] [N] is destroyed after the

call to DSYEV and if we need it we have to make a backup copy
before the call.

The reader should also familiarize herself with the use of the workspace
array WORK. This is memory space given to the routine for all its interme-
diate calculations. Determining the size of this array needs some care.
This is given by LWORK and if performance is an issue the reader should
read the documentation carefully for its optimal determination. We will
make the simple choice LWORK=3*LDA-1. The variable INFO is used as a
flag which informs the user whether the calculation was successful, in
which case its value is set to 0. In our case, if INFO takes a non zero
value, the program will abort the calculation.

Before using the program in a complicated calculation, it is necessary
to test its use in a simple, easily controlled problem. We will familiarize
ourselves with the use of DSYEV by writing the following program:

“The number LDA is necessary because the matrix element A(i,j) is found after
i+(LDA-1)*j memory positions from A(1,1).

416 CHAPTER 9. THE ANHARMONIC OSCILLATOR

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>

using namespace std;

/]
const int P 100; //P=LDA
const int LWORK = 3*P—1;
double A[P][P], W[P], WORK[LWORK];
//
extern "C” void
dsyev_(const char& JOBZ,const char& UPLO,
const int & N,
double A[P][P],const int & LDA,
double W [P],
double WORK[P],

const int & LWORK, int & INFO);
/1]
int main() {
int N;
int i,j;
int LDA, INFO;

char JOBZ ,UPLO;

string buf;

// Define the **symmetric** matrix to be diagonalized
// The subroutine uses the upper triangular part

// (UPLO="U’) in the *FORTRAN* column—major mode,

// therefore in C++, we need to define its *lower*

// triangular part!

N = 4; // an N x N matrix

A[O][O]=—-7.7;

A[1][0]= 2.1;A[1][1]= 8.3;
A[2][0]=—-3.7;A[2][1]=—16.;A[2][2]=—12.;

A[3][0]= 4.4;A[3][1]= 4.6;A[3][2]=—1.04;A[3][3]=—-3.7;

//We print the matrix A before calling DSYEV since
//it is destroyed after the call.
for (i=0;i<N;i++)
for(j=0;j<=i;j++)
cout << "A(7 KLt K7, 7KL jH KL T)=
<K A[i][j] << endl;
//We ask for eigenvalues AND eigenvectors (JOBZ="V’)

9.2. CALCULATION OF THE EIGENVALUES OF Hyp () 417

JOBZ="V’; UPLO="U’;

cout << "COMPUTING WITH DSYEV:” << endl;

// LDA: Leading dimension of A = number of rows of

// full array

LDA = P;

dsyev_(JOBZ,UPLO,N,A,LDA,W,WORK, LWORK , INFO) ;

cout << "DSYEV: DONE. CHECKING NOW:” << endl;

if (CINFO != 0){cerr << "DSYEV failed. INFO= ”
<< INFO << endl;exit(1);}

// Print results: W(I) has the eigenvalues:

cout << ”DSYEV: DONE.:” << endl;

cout << "EIGENVALUES OF MATRIX:” << endl;

cout.precision(17);

for (i=0;i<N;i++)

cout << "LAMBDA(7<L i+1

KL 7)=" <L wWli] << endl;
// Eigenvectors are in stored in the rows of A:
cout << ”"EIGENVECTORS OF MATRIX:” << endl;
for (i=0;i<N;i++){
cout << ”“EIGENVECTOR ” <KL i+l

<< ” FOR EIGENVALUE ” << W[i] << endl;
for (3=0;3<N; j++)
cout << V.7 K i+l KL (7 K j+1
KL)= 7 KL A[iT[5] << endl;
}
}// main ()

The next step is to compile and link the program. In order to link
the program to Lapack we have to instruct the linker 1d where to find the
libraries Lapack and BLASﬁ and link them to our program. A library
contains compiled software in archives of object files. The convention for
their names in a Unix environment is to start with the string “1ib” fol-
lowed by the name of the library and a .a or .so extension. For example,
in our case the files we are interested in have the names liblapack.so and
libblas.so which can be searched in the file system by the commands:

> locate libblas
> locate liblapack

*The library BLAS contains the basic linear algebra subroutines used by Lapack. In
some versions of the library, one has to only link to Lapack ignoring the link BLAS but
in some other version, linking to BLAS is necessary.

418 CHAPTER 9. THE ANHARMONIC OSCILLATOR

In order to see the files that they contain we give the commandsf}:

> ar —t /usr/lib/libblas.so
> ar —t /usr/lib/liblapack.so

In the commands shown above you may have to substitute /usr/lib
with the path appropriate for your system. If the program is in the file
test.cpp, the compilation/linking command is:

> g++ test.cpp —o test —L/usr/lib —llapack —1lblas

The option -L/usr/lib instructs the linker to look for libraries in the
/usr/1ib directoryf, whereas the options -11lapack -lblas instructs the
linker to look for any unresolved symbols (i.e. names of external func-
tions and subroutines not coded in our program) first in the library
liblapack.a and then in the library libblas.a.

The command shown above produces the executable file test which,
when run, produces the result:

EIGENVALUES OF MATRIX:

LAMBDA (1)=-21.411990695806409

LAMBDA (2)=-9.9339436575643028
LAMBDA(3)=-2.5576560809720039

LAMBDA (4)= 18.803590434342716

EIGENVECTORS OF MATRIX:

EIGENVECTOR 1 FOR EIGENVALUE —21.411990695806409

V_1(1)= —0.19784566233322534
V_1(2)= —0.4647986784623277
V_1(3)= —0.85469100929950759

V_1(4)= 0.1196769026094445
EIGENVECTOR 2 FOR EIGENVALUE —9.9339436575643028
v_2(1)= 0.82441241087467854

V_2(2)= —0.13242939824916203
V_2(3)= -0.19107651157591365
V_2(4)= —0.51603914386327754

EIGENVECTOR 3 FOR EIGENVALUE —2.5576560809720039
v_3(1)= 0.50268419698022238

°If the .so files don’t exist in your system, try ar -t /usr/lib/libblas.a etc.
"This is not necessary in our case, since /usr/lib is in the path that 1d searches
anyway. This option is useful for libraries located in non conventional paths.

9.2. CALCULATION OF THE EIGENVALUES OF Hyp () 419

V_3(2)= —0.24778437244453691
v_3(3)= 0.13285333709059657
V_3(4)= 0.81747262565942114
EIGENVECTOR 4 FOR EIGENVALUE 18.803590434342716
V_4(1)= 0.16884865648881003
V_4(2)= 0.83965918547426488
V_4(3)= —0.46405068276047351
V_4(4)= 0.22609632301334964

We are now ready to tackle the problem of computing the energy spec-
trum of the anharmonic oscillator. The main program contains the user
interface where the basic parameters for the calculation are read from the
stdin. The user can specify the dimension DIM = N of Hy and the cou-
pling constant A\. Then the program computes the eigenvalues E,,(N, \)
of the N x N matrix H,,,(\), which represents the action of the operator
H(\) in the { |n) },—01.. ~—1 representation in Hy. The tasks are allocated
to the subroutines calculate X4, calculate_evs and calculate H. The
subroutine calculate_X4 calculates the N x N matrix (z),,,. First, the
matrix x,, is calculated and then (x%),,, is obtained by computing its
fourth power. The matrix (z*),,, can also be calculated analytically and
this is left as an exercise to the reader. The subroutine calculate H calcu-
lates the matrix H,,,,(\) using the result for (z%),,, given by calculate_X4.
Finally the eigenvalues are calculated in the subroutine calculate_evs
by a call to DSYEV, which are returned to the main program for printing
to the stdout. The program is listed below and can be found in the file
anharmonic.cpp:

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>

using namespace std;

//
const int P 1000; //P=LDA
const int LWORK = 3*P—1;

int DIM;

double H[P][P], X[PI[P], X4[P][P];
double E[P], WORK[LWORK];

420 CHAPTER 9. THE ANHARMONIC OSCILLATOR

double lambda;
//
extern 7C” void
dsyev_(const char& JOBZ,const char& UPLO,
const int & N,
double H[P][P],const int & LDA,
double E [P],
double WORK[P],
const int & LWORK, int & INFO);

/]
void calculate X4 ();
void calculate_evs();
void calculate H ();
/]
int main() {
string buf;

cout <K 7# Enter Hilbert Space dimension:\n”;

cin >> DIM; getline(cin,buf);
cout << 7"# Enter lambda:\n”;

cin >> lambda; getline(cin,buf);
cout < "# lambda= 7 << lambda << endl;

cout < TVH# H#HHHHHAHFHHA R HA R RS RS H SR\ D
cout <L 7# Energy spectrum of anharmonic oscillator\n”;
cout << "# using matrix methods.\n”;

cout < "# Hilbert Space Dimension DIM = ”"<<DIM<LK endl;

cout <K 7# lambda coupling = 7 << lambda << endl;
cout < TH# H#HHHHHAHHHHA RS R R RS RS R\ D
cout < 7# Output: DIM lambda E O E_1 E_{N-1} \n”;
cout <L "# \n”;

cout.precision(15);
// Calculate X"4 operator:
calculate X4();
// Calculate eigenvalues:
calculate_evs();
cout.precision(17);
cout << "EV 7 <K DIM < 7 7 K< lambda < 7 7
for(int n=0;n<DIM;n++) cout << E[n] < 7 7;
cout <K endl;
}// main()
/]
void calculate_evs () {
int INFO;
const char JOBZ='V’ ,UPL0O="U’;

9.2. CALCULATION OF THE EIGENVALUES OF Hyp () 421

calculate H();
dsyev_(JOBZ,UPLO,DIM,H,P,E,WORK,LWORK,INFO);
if CINFO != 0){
cerr < 7dsyev failed. INFO= 7 << INFO << endl;
exit (1) ;
}

cout << ”# sk %k %k ok ok ok ok ok ok ok ok ok ok ok ok ok ok EVEC *****************\n”;

for(int n=0;n<DIM;n++)]{
cout <L 7# EVEC ” << lambda << 7 7y
for(int m=0;m<DIM;m++)
cout << H[n][m] <K 7 7;
cout <KL \n’;
}
}//calculate_evs ()
/1l
void calculate H(){
double X2[P][P];

for(int n =0;n<DIM;n++){
for(int m =0;m<DIM;m++)
H[(n][m] = lambda*X4[n][m];
H [n][n]+= n+0.5;
}

cout << aa# sk 3k ok sk sk sk sk ok sk sk sk ok ok sk sk ok ok H *****************\n”;

for(int n=0;n<DIM;n++){
cout K< 7"# HH ”;
for(int m=0;m<DIM;m++)
cout << H[n][m] < 7 7
cout <K< ’\n’;

}

cout << ”# 3k ok ok sk sk sk ok ok sk sk sk ok ok sk ok ok ok H *****************\nw;

}//calculate_H ()
//
void calculate X4 () {

double X2[P][P];

const double isqrt2=1.0/sqrt(2.0);

for(int n=0;n<DIM;n++)
for(int m=0;m<DIM;m++)
X[n]l[m]=0.0;

for(int n=0;n<DIM;n++){
int m=n—1;

422 CHAPTER 9. THE ANHARMONIC OSCILLATOR

if (m>=0) X[n][m]
m =n+1;
if (m<DIM)X[n][m] = isqrt2*sqrt(double(m));

isqrt2*sqrt(double(m+1));

}
// X2 =X . X
for (int n=0;n<DIM;n++)
for(int m=0;m<DIM;m++){
X2 [n][m] = 0.0;
for(int k=0;k<DIM;k++)
X2[n][m] += X [n][k]*X [k][m];
}
/] X4& = X2 . X2
for (int n=0;n<DIM;n++)
for(int m=0;m<DIM;m++)]
X4 [n][m] = 0.0;
for(int k=0;k<DIM;k++)
X¥4[n][m] += X2[n][k]*X2[k][m];
}
}//calculate_X4 ()

n=0
0.8 T T T T :
R I A=0.9 +
N A=0.2 x
0.75
07t '
ur 0.65
06 LommsO 00X X X X X X X
0.55 | x
0.5 L L L L L
0 0.1 0.2 0.3 0.4 0.5
1/N

Figure 9.1: The ground state energy Ey()) for A = 0.2,0.9 is calculated in the large N
limit of the eigenvalues Ey(N, \). Convergence is satisfactory for relatively small values

of N and it is slightly faster for A = 0.2 than it is for A = 0.9.

9.3. RESULTS

140

423

120 ¢
100 t
80 r
60 |
40

20 r

g

XXX XXX X X X X x % X

> >
Iyl

0.02 004 006 008 01 012 0.14

1/N

Figure 9.2: The 9th excited state Eq()) for A = 0.2,0.9 is given by the large N limit

of the eigenvalues Eq(N, \).

9.3 Results

Compiling and running the program can be done with the commands:

g++ —02 anharmonic.cpp —o an —llapack —1lblas

./an

Enter lambda:

S

$ ks sk sk ok sk ok ok ok ok ok ok ok sk ok ok ok]
#HH 0.5 0 0 O

#HH 0 1.5 0 0

#HH 0 0 2.5 0

#HH O 0 0 3.5

$skoskook sk ok sk ok sk ok ok ok ok ok sk ok ok ok]
Sk sk sk ok ok ok ok ok ok ok ok ok ok o

EVEC 0 1 0 0 O

EVEC 0 0 1 0 O

EVEC 0 0 0 1 O

EVEC 0 0 0 0 1

EV 4 0 0.5 1.5 2.5 3.5

>
>
Enter Hilbert Space dimension:
4
#
0

3k 3k 3k sk sk sk ok ok sk sk sk ok sk sk sk ok ok

sk 3k 3k sk sk sk sk sk sk sk sk ok sk sk sk ok ok

In the above program we used N =4 and A = 0. The A = 0 choice leads

424 CHAPTER 9. THE ANHARMONIC OSCILLATOR

500
450 |
400 |
350
300 -
uf 250 b
200 |
150
100 F
50 F x x «x

[Igg1E

> >
oo
N

0 1 1 1 1 1 1 1
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1/N

Figure 9.3: The 20th excited state Es(\) for A = 0.2,0.9 is given by the large N
limit of the eigenvalues Es (N, A). Convergence has not been achieved for the displayed
values of N < &0.

us to the simple harmonic oscillator and we obtain the expected solutions:
Hpym = (n+1/2)0p.m, E, = (n+1/2) and the eigenstates (eigenvectors of
Hpw) [nYazo =) = 322 _y0nm |m). Similar results can be obtained for
larger V.

For non zero values of A, the finite NV calculation contains systematic
errors from neglecting all the matrix elements H,,,(\) for n > N or
m > N. Our program calculates the eigenvalues E,,(N,\) of the finite

matrix H,,,(A), m,n=0,..., N — 1 and one expects that
E,(\) = lim E,(N,)\), (9.22)
N—o0
where
H(A) [n)x = En(A) [n)x (9.23)

is the true n-th level eigenvalue of the Hamiltonian H(\). In practice
the limit for given A and n is calculated by computing E,(N, \)
numerically for increasing values of N. If convergence to a desired level
of accuracy is achieved for the accessible values of N, then the approached
limit is taken as an approximation to E,(\). This process is shown
graphically in figures ﬁ@ for A = 0.2,0.9. Convergence is satisfactory
for quite small V for n = 0,9 but larger values of NV are needed for n = 20.
Increasing the value of n for fixed A makes the use of larger values of N
necessary. Similarly for a given energy level n, increasing A also makes

9.3. RESULTS 425

the use of larger values of IV necessary. A session that computes this
limit for the ground level energy Eo(A = 0.9) is shown belowf:

> tcsh

> g++ —02 anharmonic.cpp —llapack —lblas —o an
> foreach N (4 8 12 16 24 32)

foreach? (echo $N;echo 0.9) |./an >> data
foreach? end

> grep AEV data | awk ’{print $2,$4}’

4 0.711467845686790

8 0.786328966767866

12 0.785237674919165

16 0.784964461939594

24 0.785032515135677

32 0.785031492177730

> gnuplot

gnuplot> plot “<grep AEV data | awk ’{print 1/$2,%$4}°”

Further automation of this process can be found in the shell script file
anharmonic.csh in the accompanying software. We note the large N
convergence of Ey(N,0.9) and that we can take Fy(0.9) ~ 0.78503. For
higher accuracy, a computation using larger N will be necessary.

We can also compute the expectation values (A), (\) of an operator
A = A(p,q) when the anharmonic oscillator is in a state |n),:

(A)(N) = A(n| A|n)y. (9.24)
In practice, the expectation value will be computed from the limit

(A)a(A) = Bim (A)o(N,N) = lim walnl Alnha, (9.25)

where |n)y \ are the eigenvectors of the finite N x N matrix H,,,(\) com-
puted numerically by DSYEV. These are determined by their components
cm(N,), where

N-1
n)xa =D cm(N,A) |m), (9.26)
m=0
which are stored in the columns of the array H after the call to DSYEV:
Cm(N, \) = H[n|[m]. (9.27)

*The foreach loop construct is special to the tcsh shell. This is why an explicit tcsh
command is shown. For other shells use their corresponding syntax.

426 CHAPTER 9. THE ANHARMONIC OSCILLATOR

Substituting equation (9.26) to (9.24) we obtain

(An(N) =D (N N) e (N, A) A (9.28)

m,m’=0

and we can use (9.27) for the computation of the sum.
As an application, consider the expectation values of the operators

2%, z* and p?. Taking into account that (x), = (p), = 0, we obtain the

uncertainties Ax,, = /(22), — (z)2 = /(2?),, and Ap, = \/(p?),. Their
product should satisfy Heisenberg’s uncertainty relation Az, -Ap, 2 1/2.
The results are shown in table ﬁ and in figures 9.4-9.5. The calculation
is left as an exercise to the reader.

10

T
X8k

<X5>

P2

0 1 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1N

Figure 9.4: The expectation values (22)+/*(\), (p%)/*()) and the product of un-
certainties Az, - Ap, for n = 9 and A = 0.5 calculated from the large N limits of

(@) (NN, (02002 (N A).

The physics of the anharmonic oscillator can be better understood by
studying the large) limit. As shown in figure 9.5, the term \z* dominates
in this limit and the expectation value (z?),()\) decreases. This means
that states that confine the oscillator to a smaller range of x are favored.
This, using the uncertainty principle, implies that the typical momentum
of the oscillator also increases in magnitude. This is confirmed in figure
0.5 where we observe the expectation value (p?),()\) to increase with .
In order to understand quantitatively these competing effects we will use

9.3. RESULTS 427

14

12

10

+++++++++++++++++++

*
*
xxxxxxxxxxxxxxxxx

Figure 9.5: The expectation values (@)/%(\), (p?)+/*(\) and the product of uncer-
tainties Az, - Ap, for n =9.

a scaling argument due to Symanzik. We redefine » — A\~%/%z, p — A\/%p
in the Hamiltonian H(\) = p?/2 4 2?/2 + Az* and for large enough \ we
obtainf| the asymptotic behavior

H\) ~A3h(1), A= oo, (9.29)

where h()\) = p?/2+ Az* is the Hamiltonian of the anharmonic “oscillator”
with w = 0. Since the operator h(1) is independent of A, the energy
spectrum will have the asymptotic behavior

E,(\) ~C A2, N = 0. (9.30)
In reference [44] it is shown that for A > 100 we have that

Eo(A) = AY3(0.667 986 259 18 -+ 0.143 67A /% — 0.0088A 43 +...) |
(9.3
with an accuracy better than one part in 10°. For large values of n, the
authors obtain the asymptotic behavior

1\ 3
E,(\) ~ CAY3 <n+§> , A —00,n — 00, (9.32)

*For z — A\"V02, H — AY3(p?/2+ X\"%/322 /2 + 2), therefore in the limit A — oo the
second term vanishes and we obtain equation (.29.

428 CHAPTER 9. THE ANHARMONIC OSCILLATOR
A=0.5 A=2.0

n (x?) (p?) Az - Ap (x?) (p?) Az - Ap

0| 0.305814 | 0.826297 | 0.502686 | 0.21223 | 1.19801 | 0.504236
11 0.801251 | 2.83212 1.5064 | 0.540792 | 4.21023 | 1.50893
2| 1.15544 | 5.38489 | 2.49438 | 0.761156 | 8.15146 | 2.49089
3| 1.46752 | 8.28203 | 3.48627 | 0.958233 | 12.6504 | 3.48166
4| 1.75094 11.4547 4.47845 1.13698 17.596 4.47285
5| 2.01407 | 14.8603 5.47079 | 1.30291 | 22.9179 | 5.46443
6 2.2617 | 18.4697 6.4632 | 1.45905 | 28.5683 | 6.45619
7| 2.49696 | 22.2616 | 7.45562 1.60735 | 34.5124 | 7.44805
8| 2.72198 | 26.2196 | 8.44804 1.74919 | 40.7234 | 8.43998
9| 293836 | 30.3306 | 9.44045 | 1.88558 | 47.1801 9.43194

Table 9.1: The expectation values (x2), (p?), Az - Ap for the anharmonic oscillator for
the states |n), n =0,...,9. We observe a decrease of Az = y/(z?) and an increase of
Ap = /(p?) as A is increased. The product Az - Ap seems to remain very close to the
values (n + 1/2) of the harmonic oscillator for both values of A.

where C' = 3%/372/T'(1/4)%/3 a 1.376 507 40. This relation is tested in figure
0.6 where we observe good agreement with our calculations.

9.4 The Double Well Potential

We can also use matrix methods in order to calculate the energy spectrum
of a particle in a double well potential given by the Hamiltonian:

2 2 4

D x x
H=%" - 4=,

2 "2 M

The equilibrium points of the classical motion are located at the minima:

(9.33)

2o = £ ! (9.34)

VA DY
When the well is very deep, then for the lowest energy levels the potential
can be well approximated by that of a harmonic oscillator with angular

frequency w? = V" (z), therefore

Vmin = -

1
Emin ~ Vmin + —w. (935)

2

429

THE DOUBLE WELL POTENTIAL

9.4.

0€€ 914°8%9 | 0%1 916°'8%G | GL8 ¥99°€9% | €%8 10C°€9€ | 0000T

00L GG8°LLY | 09€ 89%%0% | 8LV ¥8C%€E | 86% 8C9'LI9C | 0008

084G 110°6€¢ | 00¢ 11€°COC | 84T ¢IC' LI | 168 9L ECT 0007

00% 006°6€T1 | O€8 LEY'8IT | GIEE 168°L6 | CECY G8E 8L 00¢

08¢€E %1€88 | 06¢8 CLLYL | 88%€ 0C8'19 | L81Y 919°6% 0¢

0€88 6L6°0€ | 04T 98C'9C | %996 06L°1C | %¢€V ¥1G'LY 4

LG%6 ¥66'YC | C9€Y 9€T1C | ¢6%0 ¥E9'LT | ¥6E1 €0CY1 I

9666 ¢G7°¢C | €819 ¥60°61 | 9€89 €L8°Gl | L6C6 €08°Cl L0

1€61 9%€°0¢ | C¥CY 0¢E'Ll | C699 L1771 | LOCL 87911 g0

G8%% CCO'LY | €ILL ¢E€0°Gl | L8GT 7%9°¢l | 6887 991°01 €0

8696 8LEEl | 991€ L8Y'11 | 66 6E8 L99°6 | €C LIL 668°L 10

VOLL %19°11 | 81€6 160°01 | %€ L6€ LLY'8 | OF €96 ¥86'9 G600

1€ €69 ¢0%'6 | 18 LES G1¢'8 | 88 9C€ 8Y0°L | L9 9¢0 10679 10°0

99 €6€ LLO6 | 6C OLY GG6°L | LY 8%6 9¥Y8'9 | L8 0€C C4L'G | 9000

0€ LI8 LOL8 | €€ 6GL C99'L | 09 ¥%0 €299 | 90 04L 884G'G | €000

87 wel A A X

8€¢C 001°8LG | ¥C1 G%1°661 | 6€8 80G'LEY | LGL9 986'Y9 | 16CC LEI'8T | 0000C
VWL ee6%0¢ | 619 GYL°9%1 | 9709 096°€6 | L8IL 068°LY | 9L06 99€°€T 0008
LG1 916°¢0V | O%11 61%°€L | LBEE LIO'LY | 190C ¢L6°€C | 98 0¢C ¥69°€ | 0007
€€66 €€0°09 | 60LC SO00°€Y | LYE€Y 199°LTC | 89CC 690°%1 | %€ 1€6 0€6°€ 00T
6609 8€6°LE | 8GY9 C61°LT | 1866 9E€Y' L1 | 9€ 960 G16°8 | LL BOL 66%°C 0¢
6GLC 18%°€1 | 61 €CE LTL'6 | LG 088 €0€'9 | €8 LIB C6C'E | LY 899 19670 4
1€89 €96°01 | 66 €07 ¢76°L | 69 16C 6LV'G | LG G688 LEL'C | 99 OLL €08°0 I
0L 019 €06°6 | 8¢ 99C €61°L | 01 8CE OILY | OF 8¢¢C 604°C | 06 €06 €7L°0 L0
GL 8LL 8C0'6 | 96 10% 8LG'9 | 86 ¥CG L€y | G€ 90% ¥CE'C | €8 GL1 9690 g0
€L TGLVI6'L | €9 €LG 96L°G | G9 C8L ¥%8°€ | 66 179 ¥60°C | 8L 166 LEI O €0
06 00€ 0CC'9 | 18 €88 8C9'Y | 1€ ¥C9 8EV'E | ¥9 €09 69L°1 | €€ 9%) 69970 10
18 L6C 679G | 16 8€€ 9L1'Y | €9 6L6 €L8°C | 10 9€% €99°1 | GL T%9 CEG0 q0°0
Gl €16 ¥LLY | %6 %60 1L9°€ | 08 9¥8 069°¢C | 8C 8%9 G€G'1 | 0C 94¢C LOS 0 10°0
LE 008 1L9% | €€ 981 909°€ | 0€ CL6 G949°C | 99 908 1¢G'1 | 1L 60% ¥0G°0 | 900°0
96 996 699°% | €1 %YL 9€G°E | €1 COC 61S9°C | 6€ 61% LOST | 99 68% 1090 | ¢00°0
ici §el §cl 'q yel X

[[7%] @ousI9§aI UT USAIS J0IR[[I2SO JTUOULIBYUR I} JO S[9AJ] ASI9UD 9y} JO UOHR[MI[Ed [edMPWNN 7@ 9[JBL

430 CHAPTER 9. THE ANHARMONIC OSCILLATOR

k+ —
b+ n:l !
L n=2
4 n=5 *
o n=9 o
1.405 [+]
%i n=20
o+ c
B4
l
14 £ o 1
I +
* +
n
W e N
® 4 +++++++++
2 3 4+ 4+ o+
T 1305 B R i i
o P
3 |
P i
p g
£
@
< 1.39)
<
o *
“ %
1.3853%2)
7
nkd
1.38 | M*W#ﬁw*%@é * x |
DE[:DDEDDDDD **%%**%%%%%*%**%%*%%**%**%%*%
U0 0000000 DUUN0UDOOODODOOOQ0OOOOD
1.375]

I I I I
0 500 1000 1500 2000
A

Figure 9.6: Test of the asymptotic relation (0.3%). The vertical axis is

E,A7Y3(n 4+ 1/2)7%/3 where for large enough n and A should approach the value
C = 34372 /T'(1/4)8/3 ~ 1.376 507 40 (horizontal line).

In this case the tunneling effect is very weak and the energy levels are
arranged in almost degenerate pairs. The corresponding eigenstates are
symmetric and antisymmetric linear combinations of states localized near
the left and right minima of the potential. For example, for the two lowest
energy levels we expect that

EO,l ~ Em'm + % s (936)
where A < |E,,in| and
+ J— J— J—
10}, ~ I+ =) 1), ~ M’ (9.37)

V2o V2

where the states |+) and |—) are localized to the left and right well of
the potential respectively (see also figure of chapter @).

We will use equations () in order to calculate the Hamiltonian
(P.33). We need to make very small modifications to the code in the file

9.4. THE DOUBLE WELL POTENTIAL 431

V(x)

Figure 9.7: The potential energy V(z) for the double well potential for A = 0.1,0.2.

anharmonic.cpp. We will only add a routine that calculates the matrices
Pnm- The resulting program can be found in the file doublewell. cpp:

//

// H : Hamiltonian operator HO+(lambda/4)*X"4
// HO : Hamiltonian HO=1/2 PA2—-1/2 XA2

[/l X,X2,X4: Position operator and its powers

[/ iP : 1 P operator

/] P2 : PA2 = —(iP)(iP) operator

/] E : Energy eigenvalues

// WORK : Workspace for lapack routine DSYEV

//

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>

using namespace std;

//
const int P 1000; //P=LDA

const int LWORK = 3*P—1;

int DIM;

double H [P][P], HO[P][P];

double X [PI[P], X2[P][P], X4[P][P];

432 CHAPTER 9. THE ANHARMONIC OSCILLATOR

double iP[P][P], P2[P][P];
double E[P], WORK[LWORK];
double lambda;
/]
extern 7’C” void
dsyev_(const char& JOBZ,const char& UPLO,
const int & N,
double H[P][P],const int & LDA,
double E [P],
double WORK[P],
const int & LWORK, int & INFO);

/]
void calculate_ops();
void calculate_evs();
void calculate H ();
/]
int main() {
string buf;

cout << "# Enter Hilbert Space dimension:\n”;

cin >> DIM; getline(cin,buf);
cout << 7# Enter lambda:\n”;

cin >> lambda; getline(cin,buf);
cout < 7# lambda= 7 << lambda << endl;

cout < TH# #HH#HHAHFHHAHFRHAHHRHAHHRHAHHRHHHHRHHHHEE\ D
cout < "# Energy levels of double well potential \n”;
cout << 7# using matrix methods.\n”;

cout <K 7# Hilbert Space Dimension DIM = ”<<DIM<KK endl;

cout <K 7# lambda coupling = 7 << lambda << endl;
cout < TH# #HH#HHAHFHHHHHHHA R HAHHRHA R A HHEHAHHRE\ D
cout < 7# Output: DIM lambda E_0 E_1 E_{N-1} \n”;
cout < "# \n”;

cout.precision(15);
// Calculate operators:
calculate_ops ();
// Calculate eigenvalues:
calculate_evs();
cout.precision(17);
cout < "EV 7 < DIM < 7 7 < lambda << 7 7
for(int n=0;n<DIM;n++) cout << E[n] <G
cout << endl;
}// main ()
/]

void calculate_evs () {

9.4. THE DOUBLE WELL POTENTIAL 433

int INFO;
const char JO0BZ='V’ ,UPLO="U’;

calculate H();
dsyev_(JOBZ,UPLO,DIM,H,P,E,WORK, LWORK , INFO) ;
if (INFO != 0){
cerr < “dsyev failed. INFO= 7 < INFO << endl;
exit (1) ;

}

cout << ”# sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok EVEC *****************\n”;
for(int n=0;n<DIM;n++)/{
cout < 7# EVEC 7 << lambda << 7 7
for(int m=0;m<DIM;m++)
cout << H[n][m] CO
cout <L \n’;
}
}// calculate_evs ()
//
void calculate_HO) {
double x2[P][P]:

for(int n =0;n<DIM;n++)
for(int m =0;m<DIM;m++)
H[n][m] = HO[n][m] + 0.25*lambda*X4[n][m];

cout << ”# sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk H *****************\n”;
for(int n=0;n<DIM;n++){
cout K< 7"# HH ”;
for(int m=0;m<DIM;m++)
cout << H[nl[m] << ~ 7
cout < ’\n’;

}

cout << ”# 3k ok ok sk sk sk ok ok sk sk sk ok ok sk ok ok ok H *****************\nw;

}// calculate_H ()
//
void calculate_ops () {

double X2[P][P];

const double isqrt2=1.0/sqrt(2.0);

for(int n=0;n<DIM;n++)
for(int m=0;m<DIM;m++){
X[n][m]=0.0;iP[n][m]=0.0;
}

for(int n=0;n<DIM;n++)]

434 CHAPTER 9. THE ANHARMONIC OSCILLATOR

int m=n—1;
if(m>=0)X [n][m]
if (m>=0)iP[n][m]
m =n+1;
if (m<DIM)X [n][m]
if (m<DIM)iP[n][m]
}
/] X2 =X . X
for (int n=0;n<DIM;n++)
for(int m=0;m<DIM;m++)]
X2 [n][m] = 0.0;
for(int k=0;k<DIM;k++)
X2[n][m] += X [n][k]*X [k][m];

isqrt2*sqrt(double(m+1));
—isqrt2*sqrt(double(m+1));

isqrt2*sqrt(double(m));
isqrt2*sqrt(double(m));

}
/] X4 = X2 . X2
for (int n=0;n<DIM;n++)
for(int m=0;m<DIM;m++){
X4 [n][m] = 0.0;
for(int k=0;k<DIM;k++)
X¥4[n][m] += X2[n][k]*X2[k][m];
}
// P2 =—iP . iP
for (int n=0;n<DIM;n++)
for(int m=0;m<DIM;m++){
P2 [n][m] = 0.0;
for(int k=0;k<DIM;k++)
P2[n][m] —= iP[n][k]*iP[k][m];
}
// Hamiltonian :
for (int n=0;n<DIM;n++)
for(int m=0;m<DIM;m++)
HO[n][m] = 0.5*(P2[n][m]—-X2[n][m]);

}//calculate_ops ()

Where is the particle’s favorite place when it is in the states |+) and
|—)? The answer to this question is obtained from the study of the
expectation value of the position operator (z) in each one of them. We
know that when the particle is in one of the energy eigenstates, then we
have that

(X)n(N) = x{n|x|n)y =0 (9.38)

9.4. THE DOUBLE WELL POTENTIAL 435

because the potential V(z) = V(—xz) is even. Therefore
(@)=(N) = (£lz[*)
1
= 75 ({01 [0)x £ A(1] 2 |0)x £ (0] 2 [1)x 4+ (1] 2]0)2)
= +V2(1]2]0)x, (9.39)

where in the last line we used the relation (9.38) (0| z [0), = A(1|z |1}, =
0 and that the amplitudes »(1|2]0)y = A(0|z[1),. Also[] we have that
A(1]2]0)5 > 0. Therefore, if we have that [0}, = >>°°_ ¢ |m) and [1), =
S ¢ |m), we obtain

m=0

@)V =2v2 > el X (9.40)

m,m’=0

Given that for finite /V, the subroutine DSYEV returns approximations to
the coefficients c\r) in the columns of the matrix H[DIM] [DIM] so that
" ~ H[n] [m], you may compare the value of (z),()\) with the classical

values zo = +1/v/\ as) is increased.

““You may convince yourselves by looking at the wave functions in figures of
chapter (] and by computing the relevant integrals.

436 CHAPTER 9. THE ANHARMONIC OSCILLATOR

T T T T « M %
« x x%¥ XX
x %%%%%%****** T *
1r %*%%**** TR * 1
4+
++++
% +
0.01 - e
* +
0.0001 | + E
=4
< *
.
1e-06 -
.
1e-08 | * E
.
1le-10 n=0 -+
+ n=6
* n=30 *
1 1 1 1
0.01 0.1 1 10 100

A

Figure 9.8: Calculation of the difference of the energy levels A, = E,,1 — E, for
n = 0,6,30 for the double well potential from the program doublewell.cpp. The
difference vanishes as the well becomes deeper with decreasing A\. The states |+) =
(In+1)x £ |n))/v/2 are more and more localized to the right or left well respectively.

9.5.

PROBLEMS 437

9.5 Problems

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

Calculate the matrix H(\) for N = 2,3 analytically. Calculate its
eigenvalues for N = 2. Compare your results with the numerical
values that you obtain from your program.

Add the necessary code to the program in the file test.cpp so
that it checks that the eigenvectors satisfy their defining relations
Av; = \jv; and that they form an orthonormal basis v, - v; = §;;.

Calculate E5(A) and FE9(A) for A = 0.8,1.2 with an accuracy better
than 0.01%.

For how large n can you calculate E,, () for A = 1 with an accuracy
better than 2% when N = 64?7

Calculate E5(\) and Ejp(A) for 0 < A < 4 with step dA = 0.2 by
achieving accuracy better than 0.01%. How large should N be taken
in each case?

Calculate the expression that gives the matrix elements of the oper-
ator z* in the |n) representation analytically. Modify the program
in anharmonic.cpp in order to incorporate your calculation. Verify
that the results are the same and test if it has an effect in the to-
tal computation time with and without calculating the eigenvalues
and eigenvectors of the Hamiltonian. Compute in each case the de-
pendence of the cpu time on N by computing the exponent (cpu
time)~ N* for N = 40 — 1000.

Modity the code in the file anharmonic.cpp so that the arrays H,
X, X4, E, WORK are dynamically allocated and their dimension is
determined by the variable DIM read by the program interactively.

Make an attempt to reproduce the results of Hioe and Montroll [44]
given in table for n = 3 and n = 5. What is the largest value of
A that you can study given your computational resources?

Make an attempt to reproduce the results of Hioe and Montroll [44]
given by equation (). Calculate the ground state energy E, for
200 < A < 20000 and then fit your results to a function of the form

438 CHAPTER 9. THE ANHARMONIC OSCILLATOR

A3 (a + bAT2/3 4+ cA™%/3). What is the accuracy in the calculation
of the coefficients a, b and ¢ and how good is the agreement with

equation (9.31)?

9.10 Modify the code in the file anharmonic.cpp so that it calculates the
expectation values (z%),(N,\), (p*).(N,\) and the corresponding
products Az - Ap.

(Hint: See the file anharmonicOBS. cpp.)

9.11 Reproduce the results shown in figure 0.4. Repeat your calculation
for A =2.0,10.0,100.0. Repeat your calculations for n = 20.

9.12 Reproduce the results shown in figure 9.5. Repeat your calculations
for n = 20.

9.13 Reproduce the results shown in figure 9.6. Repeat your calculation
for n = 3,7,12,18, 24.

9.14 Write a program that calculates the energy levels of the anharmonic
oscillator

1 1
H(\ p) = §p2 + §x2 + Azt 4 pa®. (9.41)

Calculate FE, () forn =0, 3,8,20, A = 0.2 and p = 0.2,0.5, 1.0, 2.0, 10.0.

9.15 Modify the program of the previous problem so that it calculates the
expectation values (z?),,(N,), (p?),(N,) and the products Az - Ap.
Calculate the expectation values (z?),()\), (p*)n()\) and Az - Ap for
n=20,3,820, A =0.2 and p = 0.2,0.5,1.0, 2.0, 10.0.

9.16 Use the program doublewell.cpp in order to calculate the energy
level pairs £, E,4+1 for n = 0,4,20 and A = 0.2,0.1,0.05,0.02. Cal-
culate the difference A,, = F,,;; — E,, and comment on your results.

9.17 Define the energy values

_ 1 + + !
=1 ntg).
Compare the results for E,, £, of the previous problem with ¢, —
A, /2 and €, + A, /2 respectively. Explain your results.

9.5. PROBLEMS 439

9.18 Modify the program doublewell.cpp, so that it calculates the ex-
pectation values (z).()\) given by equation (9.40). Compare (z)+()\)
with the classical values g = :|:1/\/X for A =0.2,0.1,0.05,0.02,0.01.

9.19 Repeat the previous problem when the states |+) = (1/v/2)(|n)x £
|n 4 1),) for n = 6 and n = 30.

9.20 For the simple harmonic oscillator, the energy levels are equidis-
tant, i.e. A, = E,11— E, =1, (A2 — A,) /A, = 0. Calculate these
quantities for the anharmonic oscillator and the double well poten-
tial for A = 1,10, 100, 1000 and n = 0,8,20. What do you conclude
from your results?

440 CHAPTER 9. THE ANHARMONIC OSCILLATOR

Chapter 10

Time Independent Schrodinger
Equation

In this chapter, we will study the time independent Schrédinger equation
for a non relativistic particle of mass m, without spin, moving in one
dimension, in a static potential V' (z). We will only study bound states.
The solutions in this case yield the discrete energy spectrum {E,} as well
as the corresponding eigenstates of the Hamiltonian {¢,(x)} in position
representation.

From a numerical analysis point of view, the problem consists of
solving for the eigensystem of a differential equation with boundary con-
ditions. Part of the solution is the energy eigenvalue which also needs to
be determined.

As an exercise, we will use two different methods, one that can be
applied to a particle in an infinite well with V(z) = V(—x), and one that
can be applied to more general cases. The first method is introduced
only for educational purposes and the reader may skip section to
go directly to section [10.3.

10.1 Introduction

The wave functions (x), which are the position representation of the
energy eigenstates, satisfy the Schrédinger equation
R 9%y(x)
2m Ox?

+V(z)y(z) = Ey(z), (10.1)

441

442 CHAPTER 10. SCHRODINGER EQUATION

with the normalization condition

+oo
{Wly) = Y (@)(a)dr = 1. (10.2)
The Hamiltonian operator is given in position representation by
R h2 82
H=—m 2+ V(i 10.

and it is Hermitian, i.e. H' = H. Equation (10.1) is an eigenvalue
problem

Hip(z) = Ey(x), (10.4)
which, for bound states, has as solutions a discrete set of real functions
i (x) = ¢p(x) such that Flwn(x) = E,¢n(x). The numbers £y < E; <
F5 < ... arereal and they are the (bound) energy spectrum of the particle
in the potential] V(z). The minimum energy FEj is called the ground
state energy and the corresponding ground state is given by a non trivial
function ¢y(z). According to the Heisenberg uncertainty principle, in this
state the uncertainties in momentum Ap > 0 and position Az > 0 so that
Ap-Ax > h/2.

The eigenstates v,,(x) form an orthonormal basis

—+00

(Vnlthm) = V() () dx = O - (10.5)

(o)

so that any (square integrable) wave function ¢(z) which represents the
state |¢) is given by the linear combination

$(x) =Y catha() . (10.6)

n=0

The amplitudes ¢, = (¢¥,|p) = fj;o V¥ (x)p(x) dr are complex numbers

n

that give the probability p, = |c,|? to measure energy F, in the state |¢).

'The fact that the energy spectrum of the particle is bounded from below depends
on the form of the potential. We assume that V() is such that Ej is finite. Also, in one
dimension, the energy spectrum of a particle for reasonable potentials is non degenerate
(see, however, S. Kar, R. Parwani, arXiv:0706.1135.)

http://arxiv.org/abs/0706.1135

10.1. INTRODUCTION 443

For any state |¢) the function

po(z) = |¢(2)]> = ¢*(x)p(x) (10.7)

is the probability density of finding the particle at position z, i.e. the
probability of detecting the particle in the interval [z, z5] is given by

z2 T2
Py(x1 <z < x9) = / po(x) de = / " (x)o() dx . (10.8)
The normalization condition (10.9) reflects the conservation of probabil-
ity (independent of time, respected by the time dependent Schrodinger
equation) and the completeness (in this case the certainty that the particle
will be observed somewhere on the z axis).

The classical observables A(z,p) of this quantum mechanical system
are functions of the position and the momentum and their quantum
mechanical versions are given by operators A(z,p). Their expectation
values when the system in a state |¢) are given by

—+00

(A = (8l Alo) = | ¢"(2)A(#.p)o(x) da (10.9)

From a numerical point of view, the eigenvalue problem (10.1) re-
quires the solution of an ordinary second order differential equation.
There are certain differences in this problem compared to the ones stud-
ied in previous sections:

e Instead of an initial value problem (i.e. the values of the function
and its derivative are given at one point), we have a boundary
value problem (values of the function or its derivative given at two
different points).

* The eigenvalue (energy) is unknown and should be determined as
part of the solution.

As an introduction to such classes of problems, we will present some
simple methods which are special to one dimension.

For the numerical solution of the above equation we renormalize z, the
function ¢(z) and the parameters so that we deal only with dimensionless
quantities. Equation (10.1) is rewritten as:

d? 2m

—50(@) + 25 (B = V(@)p(e) = 0. (10.10)

444 CHAPTER 10. SCHRODINGER EQUATION

Then we choose a length scale L which is defined by the parameters of
the problemf| and we redefine # = x/L. We define (&) = ¢(z) ¢'(%) =
diy(x)/dx = Ldiy(x)/dr and we obtain
_— 2mL>?
9@ +

We define v(z) = 2mL*V (z)/h* = 2mL*V(ZL)/h*, ¢ = 2mL*E/h* and
change notation to £ — z, ¢ — ¢». We obtain

V'(x) = —(e —v(x))(z). (10.12)

The solutions of equation (10.1) can be obtained from those of equation
(10.12) by using the following “dictionary”f:

(E—V(EL))(E) =0. (10.11)

LEopo V(z) = " (z/L) (10.13)
T T T o Y T o2t '
The dimensionless momentum is defined as p = —i0/0% = —iLd/0z and
we obtain .
h
The commutation relation [z,p] = i¢h becomes [Z,p] = i. The kinetic
2
energy 1" = 2p_m is given by
h? o2
T — 52 - 101
omr?? T T amI?0i? (10.15)
and the Hamiltonian H =T +V
2o, 12 2
H = 577 (P> +v(2)) = S (—@ —i—v(:z:)) : (10.16)

In what follows, we will omit the tilde above the symbols and write x
instead of z.

"There are m, h and the coupling constants in the function V(z). The range of the
potential will determine L in some problems and it is given explicitly in potential wells.
In potentials of real physical systems, however, this is also determined by the coupling
constants.

*If we normalize the solutions (Z) of equation (10.19) according to the relation
fj:; Y*(&)1p(Z)dz = 1, we should also take v (x) = (1/v/L)¢(z/L) in order to be prop-
erly normalized fj;f *(z)(z)dr = 1.

10.2. THE INFINITE POTENTIAL WELL 445

v v v

Vo Vo

|

-1 +1 -1 +1 -1 —-a +a 4] X

Figure 10.1: The potentials given by equations (10.17), (10.26) and (110.27).

10.2 The Infinite Potential Well

The simplest model for studying the qualitative features of bound states
is the infinite potential well of width L where a particle is confined within
the interval [—L/2, L/2]:

|0 lz] <1
v(w)—{ too |a] > 1 (10.17)

The length scale chosen here is L/2 and the dimensionless variable x
corresponds to z/(L/2) when z is measured in length units.
The solution of (10.12) can be easily computed. Due to the symmetry

v(—z) =v(z), (10.18)

of the potential, the solutions have well defined parity. This property will
be crucial to the method used below. The method discussed in the next
section can also be used on non even potentials.

The solutions are divided into two categories, one with even parity

Un(x) = w,(f)(—:c) = wﬁf) () for n =1,3,5,7,... and one with odd parity
Yn(x) = —w,(f)(—x) = zm(f)(:v) forn =2,4,6,8,....

2

D(z) =cos (Zz) || <1 n=1,3,57,... (10.19)
. sin (%fx) [z[<1 n=24,68,...

446 CHAPTER 10. SCHRODINGER EQUATION

where
nm

2
w=(5) (10.20)
and the normalization has been chosen so that] [*, (1, (2))? do = 1.
The solutions can be found by using the parity of the wave functions.

We note that for the positive parity solutions

v =4 wP'(0)=0, (10.21)
whereas for the negative parity solutions

Vo0) =0 w(0) = A. (10.22)

The constant A depends on the normalization of the wave function.
Therefore we can set A = 1 originally and then renormalize the wave
function so that equation (10.2) is satisfied. If the energy is known, the
relations (10.21) and ((10.22) can be taken as initial conditions in relation
(10.12). By using a Runge—Kutta algorithm we can evolve the solution
towards x = £1. The problem is that the energy ¢ is unknown. If the en-
ergy is not allowed by the quantum theory we will find that the boundary
conditions

PE(£1) =0 (10.23)

n

are violated. As we approach the correct value of the energy, we obtain
P (£1) — 0.
Therefore we follow the steps described below:

¢ We choose an initial value for the energy e that is lower than the one
we are looking for. We can use estimates from known solutions of
similar looking potential wells or simply start from a value slightly
higher than the absolute minimum of the potential.

¢ We choose the parity of the solution and we set initial conditions

according to equations (10.21) and ((10.22).

‘According to the dictionary mentioned in the previous section, for a potential

well where x € [-L/2,L/2] the dimensionless position variable has been chosen to be
2

2/(L/2) € [-1,1]. Then By = grfipmen = doan? and vy (z) = /2/Lcos (nm/L).

1/}%7)(1;) — \/2/Lsin (nmz/L). Note that ¢, = p? according to equations (10.13) and
([0.19.

10.2. THE INFINITE POTENTIAL WELL 447

Wix)
1Wi(X)-Wn=o(9]
8

0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1

Figure 10.2: Convergence of the solution ;(z) of (10.12) with the potential (10.17)
as a function of the number of iterations ¢ in the program well.cpp. Initially energy
= 2.0 and parity = 1. After 29 iterations the solution converges to the ground state
Y1(z) = cos(rz/2) with energy € = (7/2)? and with relative accuracy ~ 107%. The
bottom plot shows the error as a function of the number of iterations in a logarithmic
scale. For i =iter = 1,2,3,5,10,12,20 we obtain energy = 2.4, 2.6, 2.4, 2.4625,
2.46875, 2.4673828125.

¢ We evolve the solutions using a 4th order Runge-Kutta method
from f 2 =0 to = = +1.

e If equation (10.23) is not satisfied, we increase the energy by de and
we repeat.

¢ We repeat until wﬁf)(l) changes sign. Then we lower the energy by
de = —de/2.

* The process is ended when |w7(1i)(1)| < ¢ for appropriately chosen
small §.

For the evolution of the solution from = = 0 to = 1 we use the 4th
order Runge-Kutta method programmed in the file rk.cpp of chapter .
We copy the function RKSTEP in a local file rk.cpp. The integration of

(10.12) can by done by using the function ¢(z) = ()

Y'(r) = ¢(z)
(x) = (v(x)—e)Y(x), (10.24)

*The function in [—1,0) is determined by the parity of the solution.

448 CHAPTER 10. SCHRODINGER EQUATION

with the initial conditions

'(0) =0 even parity
'(0) =1 odd parity . (10.25)

< =

1
$p(0)=0 , ¢(0)=

We use the notation ¢ (z) — psi, ¢(x) — psip. The functions f1 and £2
correspond to the right hand side of (). They are the derivatives of
Y(z) and ¢(x) respectively and fi=psip, £2=(V-energy)*psi. The code
of £1 and £2 is put in a different file so that we can easily reuse the code
for many different potentials v(z). The file wellInfSq.cpp contains the
necessary program for the potential of equation (10.17):

/]
// file: welllntSq.cpp

/]

// Functions used in RKSTEP function. Here:

//t1 = psip(x) = psi(x)’

/112 = psip(x)’= psi(x)’’

/]

// All one has to set is V, the potential
/]

#include <iostream >

#include <fstream >

#include <cstdlib >

#include <string>

#include <cmath>

using namespace std;

extern double energy;

//|——— trivial function: derivative of psi

double

f1(const double& x, const double& psi,const double& psip) {
return psip;

}

/]

//——— the second derivative of wavefunction:
/] psip(x)’ = psi(x)’’ = —(E-V) psi(x)

double

f2(const double& x, const double& psi,const double& psip) {
double V;

/]——— potential , set here:
v = 0.0;
/|/———— Schroedinger eq: RHS

return (V—energy)*psi;

10.2. THE INFINITE POTENTIAL WELL 449

L |

We stress that the energy ¢ = energy is put in the global scope so that
it can be accessed by the main program.

The main program is in the file well.cpp. The user enters the pa-
rameters (energy, parity, Nx) and the loop

while (iter < 10000){

if (abs(psinew) <= epsilon) break;
if (psinew*psiold < 0.0) de = —0.5*de;
energy += de;

}

exits when ¢)(1) =psinew has an absolute value which is less than epsilon,
i.e. when the condition (10.23) is satisfied to the desired accuracy. The
value of the energy increases up to the point where the sign of the wave
function at x = 1 changes (psinew*psiold< 0). Then the value of the
energy is overestimated and we change the sign of the step de and re-
duce its magnitude by a half. The algorithm described on page is
implemented inside the loop. After exiting the loop, the energy has been
determined with the desired accuracy and the rest of the program stores
the solution in the array psifinal (STEPS). The results are written to the
file psi.dat. Note how the variable parity is used so that both cases
parity= +1 can be studied. The full program is listed below:

/1
[/ tile: well.cpp

/1

// Computation of energy eigenvalues and eigenfunctions
//of a particle in an infinite well with V(—x)=V(x)

/1

//Input: energy: initial guess for energy

/] parity: desired parity of solution (+/— 1)
// Nx—1 : Number of RK4 steps from x=0 to x=1
//Output: energy: energy eigenvalue

// psi.dat: final psi[x]

// all .dat: all psi[x] for trial energies

/1

#include <iostream >

450 CHAPTER 10. SCHRODINGER EQUATION

#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
//
const int P = 10000;
double energy;

/]
void
RKSTEP(double& t, double& x1,
double& x2,
const double& dt);
/]

int main() {
double dx,x,epsilon,de;
double psi,psip,psinew,psiold;
double array_psifinal[2*P+1],array_xstep[2*P+1];
double *psifinal = array_psifinal+P;
double *xstep = array_xstep +P;
// psifinal points to (array_psifinal+P) and one can
//use psifinal[-P]... psifinal[P]. Similarly for xstep
int parity,Nx,iter,i,node;
string buf;
//——— Input:
cout << “Enter energy,parity ,Nx:\n”;
cin >> energy >> parity >> Nx; getline(cin,buf);
if (Nx > P){cerr << "Nx>P\n”;exit(1);}
if (parity > 0) parity= 1;
else parity=—1;
cout <K TH# H#HHHHHAHHHHAHFHHAHSHHFHSRHFHARHAHARHHHHE D
cout <L "# KEstart= 7 < energy
< 7 parity= 7 < parity << endl;

dx = 1.0/(Nx—1);

epsilon = 1.0e—6;

cout << "# Nx= 7 <L Nx KL 7 dx = 7 KL dx
KL 7 eps= 7 << epsilon << endl;

cout < T# #HH#AH#HAH#HHAHHHHAHHHHAHARHAH AR HAHHRHAHHA DT
//———— Calculate:

ofstream myfile(all.dat”);

myfile.precision(17);

cout .precision(17);
iter = 0;

psiold = 0.0;
psinew = 1.0;

10.2. THE INFINITE POTENTIAL WELL

de = 0.1 * abs(energy);
while(iter < 10000) {
// Initial conditions at x=0
X = 0.0;
if (parity == 1){
psi = 1.0;
psip = 0.0;
}else {
psi = 0.0;
psip = 1.0;
}
myfile < iter <K 7 7 KL energy K
KL x <KL 77 KL psi KL

< psip <K endl;
// Use Runge—Kutta to forward to x=1
for (i=2;i<=Nx;i++){
x = (i—2)*dx;
RKSTEP(x,psi,psip,dx);
myfile << iter << 7 7 <L energy <<
K x CORRR S -E31 <L
< psip << endl;
}

5% 9

9% 9

psinew = psi;

cout < iter <K 7 7 K energy <L 77
<L de < 7 7 K psinew << endl;

// Stop if value of psi close to 0

if (abs(psinew) <= epsilon) break;

// Change direction of energy search:

if (psinew*psiold < 0.0) de = —0.5*de;

energy += de;

psiold = psinew;

iter++;

} //while(iter < 10000)
myfile.close();
//We found the
// calculate it

solution:
once again and store it

if (parity == 1){

psi = 1.0;

psip = 0.0;

node = 0; //count number of nodes of
}else {

psi = 0.0;

psip = 1.0;

node = 1;

9

}

function

451

452 CHAPTER 10. SCHRODINGER EQUATION

X = 0.0;

xstep [0] = x;

psifinal[0] = psi; //array that stores psi(x)
psiold = 0.0;

// Use Runge—Kutta to move to x=1
for(i=2 ; i<=Nx ; i++)|

X = (i—2)*dx;
RKSTEP (x,psi,psip.dx);

xstep [i—1] = x;
psifinall[i—1] = psi;

// Use parity to compute psi(—x)
xstep [1—4i] = —x;
psifinal[l1—i] = psi*parity;

// Determine zeroes of psi(x):
// psi should not be zero within epsilon:

if (abs(psi) > 2.0*epsilon) {
if (psi*psiold < 0.0) node += 2;
psiold = psi;

}
}//for(i=2;i<=Nx;i++)
node++;

//print final solution:
myfile.open(”psi.dat”);

cout << 7Final result: E= 7 < energy
KL ” n=" << node
< 7 parity= "7 << parity << endl;
myfile KL "# E= 7 < energy
KL 7 n=" << node
< 7 parity= "7 < parity << endl;
for (i=—(Nx—1);i<=(Nx—1);i++)
myfile << xstep [i] L7z
<< psifinall[i] << endl;
myfile.close();
}// main ()

The compilation and running of the program can be done with the com-
mands

> gt++ well.cpp wellInfSq.cpp rk.cpp —o well
> . /well

Enter energy,parity,Nx:

2.0 1 400
R

Estart= 2 parity= 1

10.2. THE INFINITE POTENTIAL WELL 453

Nx= 400 dx = 0.00250627 eps= 1e—06

HEHHHHH T R R R

0 2 0.200000000 0.155943694

1 2.2000000000 0.200000000 0.087444801

28 2.4674072265 1.220703125e—05 —1.950054368e—06
29 2.4674011230 —6.103515625e—06 —7.246215909e—09
Final result: E= 2.4674011230468746 n= 1 parity= 1

The energy is determined to be ¢ =2.467401123 which can be compared
to the exact value ¢ = (7/2)? ~ 2.467401100. The fractional error is
~ 1078, The convergence can be studied graphically in figure [10.2.

The calculation of the excited states is done by changing the parity and
by choosing the initial energy slightly higher than the one determined in
the previous stepfl. The results are in table 10.1. The agreement with the
exact result €, = (nm/2)? is excellent.

We close this section with two more examples. First, we study a
potential well with triangular shape at its bottom

| wolx] x| <1
v(x) = { too |z] > 1 (10.26)
and then a double well potential with
Vo lz| < a
v(z) = 0 a<lz|<1 (10.27)

+oo 1< |z

where the parameters vy, a are positive numbers. A qualitative plot of
these functions is shown in figure .

For the triangular potential we take vy = 10, whereas for the double
well potential vy = 100 and @ = 0.3. The code in wellInfSq.cpp is appro-
priately modified and saved in the files wel1InfTr.cpp and wellInfDbl. cpp
respectively. All we have to do is to change the line computing the value
of the potential in the function £2. For example the file wellInfTr.cpp
contains the code

f f— potential , set here:
V = 10.0 * abs(x);

*Careful: if the energy levels are too close, we should keep the initial energy constant
and change the sign of parity.

454 CHAPTER 10. SCHRODINGER EQUATION
n (nm/2)? Square Triangular Double Well
1] 2.467401100 | 2.467401123 | 5.248626709 | 15.294378662
2 | 9.869604401 | 9.869604492 | 14.760107422 | 15.350024414
3 | 22.2066099 | 22.2066040 | 27.0690216 59.1908203
4 39.47841 39.47839 44.51092 59.96887
5 | 61.6850275 | 61.6850242 | 66.6384315 | 111.3247375
6 88.82643 88.82661 93.84588 126.37628
7 | 120.902653 | 120.902664 | 125.878830 150.745215
8 157.91367 157.91382 162.92569 194.07578
9 | 199.859489 | 199.859490 | 204.845026 235.017471
10 | 246.74011 246.74060 251.74813 275.67383
11| 298.555533 | 298.555554 | 303.545814 | 331.428306
12 | 355.3057 355.3064 360.3107 388.7444

Table 10.1: Energy eigenvalues for the square, triangular and double well potentials
(equations ([10.17). (10.26) with vy = 10 and equation (10.27) with vy = 100, @ = 0.3).
The agreement of the results for the square potential with the exact ones is excellent.
For the other potentials, we note that as we move further from the bottom of the well
we obtain energy levels very close to those of the square well: The particle does not feel
the influence of the details at the bottom of the well. For the double well potential we
obtain E; ~ E, and E3 ~ E4 according to the analysis on page 55

10.2. THE INFINITE POTENTIAL WELL 455

whereas the file wellInfDbl.cpp contains the code

//|——— potential , set here:
if (abs(x) <= 0.3)

Vv = 100.0;
else

v = 0.0;

The analysis is performed in exactly the same way and the results are
shown in table [10.1. Note that, for large enough n, the energy levels of
all the potentials that we studied above tend to have identical values.
This happens because, when the particle has energy much larger than vy,
the details of the potential at the bottom do not influence its dynamical
properties very much. For the triangular potential, the energy levels have
higher values than the corresponding ones of the square potential. This
happens because, on the average, the potential energy is higher and the
potential tends to confine the particle to a smaller region (Ax is decreased,
therefore Ap is increased). This can be seen in figure where the wave
functions of the particle in each of the two potentials are compared.

Similar observations can be made for the double well potential. More-
over, we note the approximately degenerate energy levels, something
which is expected for potentials of this form. This can be understood
in terms of the localized states given by the wave functions ¢, (z) =
(1/V2)(t1(x) +vu(x)) and v (x) = (1/v/2)(¢1(x) — a(x)). The first one
represents a state where the particle is localized in the left well and the
second one in the right. This is shown in figure [10.4. As v, — +oo the
two wells decouple and the wave functions ¢, () become equal to the en-
ergy eigenstate wave functions of two particles in separate infinite square
wells of width 1 — a with energy eigenvalues e, ; = e¢_; = (7/(1 — a))*.
The difference of ¢; and ¢; from these two values is due to the finite v
(see problem).

We will now discuss the limitations of this method. First, the method
can be used only on potential wells that are even, i.e. v(z) = v(—z). We
used this assumption in equations (10.21) and (10.22) giving the initial
conditions for states of well defined parity. When the potential is even,
the energy eigenstates have definite parity. The other problem can be
understood by solving problem f: When v(0) > e, the wave function is
almost zero around = = 0 and the integration from z = 0 to z = 1 will be

456 CHAPTER 10. SCHRODINGER EQUATION

ssssss

[

rrrrrrrr

rrrrrrrr

Vi)
(2]
N
.

elo)

Figure 10.3: The wave functions of the energy eigenstates of the infinite square and
triangular well potentials for n = 1,2,3,4,8,12 given by equations (0.17) and ((10.26)
with vog = 10. We observe the influence of the shape of the potential on the wave
functions with small n, while for n > 8 the influence becomes weaker.

dominated by numerical errors. The same is true when the particle has

to go through high potential barriers.

This method can also we used on potential wells that are not infinite.
In that case we can add infinite walls at points that are far enough so
that the wave function is practically zero there. Then the influence of

this artificial wall will be negligible (see problem [3).

10.3. BOUND STATES 457

Figure 10.4: The functions ¢4 (z) = (1/V2)(¢n () £ ¢ny1(x)) for n = 1,3,5 for the
double well potential (equation ({10.27) with vy = 100, a = 0.3) are plotted using bold red
lines. We observe that the more degenerate the states, the stronger the localization of the
particle to the left or right well. The other plots are those of the energy eigenfunctions
forn=1,2,3,4,5,6.

10.3 Bound States

A serious problem with the method discussed in the previous section is
that it is numerically unstable. You should have already realized that if
you tried to solve problem [§. In that problem, when the walls are moved
further than |z| = 3, the convergence of the algorithm becomes harder.
You can understand this by realizing that in the integration process the
solution is evolved from the classically allowed into the classically forbid-
den region so that an oscillating solution changes into an exponentially
damped one. But as |z| — 400 there are two solutions, one that is phys-
ically acceptable ¢(z) ~ e *”I and one that is diverging v(z) ~ et*ll
which is not acceptable due to (10.2). Therefore, in order to achieve con-

458 CHAPTER 10. SCHRODINGER EQUATION

200 +

100 +

wix)

Xmax

200 +

Figure 10.5: Integration of Schrédinger’s equation by the use of the algorithm of
section [[0.3. The wave functions and their derivatives are given small trial values
at xmin and xmax which are in the classically forbidden regions of . The point z,,
is calculated from the equation v(z,,) = e. The wave functions are evolved to z,,
according to ({10.24) and we obtain the solutions () (z) and ¢(~)(z). We renormalize
() (x) so that) (z,,) = () (x,,) and we vary the energy until the derivatives
P (2,) =) (2,,).

vergence to the physically acceptable solution, the energy has to be finely
tuned, especially when we integrate towards large |z|. For this reason it
is preferable to integrate from the exponentially damped region towards
the oscillating region. The idea is to start integrating from these regions
and try to match the solutions and their derivatives at appropriately cho-
sen matching points. The matching is achieved at a point z,, by trying
to determine the value of the energy that sets the ratio

¢) = ¢(+)/<xm)/¢(+) (Tm) — ¢(7)/(1’m)/¢(7)(1’m)
PO (@) [P (2) + P (@00) [(1)

equal to zero, within the attainable numerical accuracy. It is desirable to
choose a point z,, within the classical region (¢ > v(z)) and usually we
pick a turning point ¢ = v(x). By renormalizing ¢(*)(x) we can always set
V) (z,,) =) (z,,), therefore f(e) < 1 means that 7 (z,,) ~ (' (x,,).

(10.28)

10.3. BOUND STATES 459

The denominator of (10.28) sets the scale of the desired accuracyﬂ The
idea is depicted in figure 10.5. The algorithm is the following:

¢ Choose the integration interval [xmin,xmax].

e Choose the initial conditions (7)(xmin), ¥(7(xmin), *)(xmax),
¢ (xmax). This choice depends on the potential v(x). Usually
we take xmin and xmax deep enough in the classically forbidden
region and choose the values (7 (xmin), ¢*)(xmax) to be zero or
exponentially small (e.g. ~ e ##l, k2 = v(2) —¢). The corresponding
values of the derivatives ¢)(7)(xmin), 1)(*)’(xmax) are also taken to be
small. The arbitrary normalization of ¢(z) allows these initial val-
ues to be chosen in a crude way. The relative sign of the derivatives
at large |z| (determined e.g. by the parity of the wave function for
even potentials) is also taken care by the renormalization of (7 (z)
when applying the matching condition. For an infinite well, the
points xmin,xmax are the ones where the potential becomes infinite
and 97 (xmin) =) (xmax) = 0.

¢ Choose the initial value of the energy € and of the energy variation
step Oe.

¢ Calculate xm from the initial value of the energy and the solution of
v(z) = e. Choose the solution that is at the left most sidef].

 Evolve the equations (10.24) from xmin to xm and obtain the solu-
tions (7 (), ().

 Evolve the equations (10.24) from xmax to xm and obtain the solu-
tions) (), ().

* Renormalize ¢(7) () —) (z) () (xm) /1)~ (xm)), so that ¢(*) (xm) =
Y (xm).

e Compute the ratio f(e) of equation (10.28).

e If |f(e)] < ¢ for appropriately chosen ¢ > 0, the calculation ends.
The result for the energy eigenvalue and eigenfunction is considered

“If we are unlucky enough to pick a point where 9’(z,,) = 0, this criterion will fail.
*Note that this point changes when we vary e

460 CHAPTER 10. SCHRODINGER EQUATION

to be determined with adequate accuracy and we may proceed with
the analysis of the results.

e If f(e) changes sign it means that we have crossed the energy eigen-
value. Reverse the direction of search by taking de — —de/2.

¢ Change the energy ¢ — €+ e and repeat by going back to the fourth
step.

When we exit the above loop, the current wave function is a good ap-
proximation to the eigenfunction 1, (z) corresponding to the eigenvalue
€,. We normalize the wave function according to equation (10.2) and we
calculate the expectation values according to (10.9). It is also interest-
ing to determine the number of nodesf] ny of the wave function which is
related to n by n =ny + 1.

Our program needs to implement the Runge—Kutta algorithm. We use
the function RKSTEP (see page 220) which performs a 4th order Runge—
Kutta step. Its code is copied to the file rk.cpp.

The potential v(z) is coded in the function V(x). The boundary con-
ditions are programmed in the function boundary(xmin, xmax, psixmin,
psipxmin, psixmax, psipxmax) which returns the values of psixmin =
¢ () (xmin), psipxmin = (7 (xmin), psixmax = 1)*)(xmax), psipxmax =
¥(7)"(xmax) to the calling program. These functions are put in a separate
file for each potential that we want to study. The name of the file is
related to the form of the potential, e.g. we choose schInfSq.cpp for the
infinite potential well of (10.17). The same file contains the code for the
functions f1, f2:

/1

// file: schInfSq.cpp
/1

//—— potential:

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

*The number of points z for which ¢(z) = 0 and xmin < < xmax. The relation
n =ng + 1 sets €; to be the ground state for which ng = 0.

10.3. BOUND STATES 461

extern double energy;
f——
double V (const double& x){
return 0.0;
Y //VO
/) — boundary conditions:
void
boundary (const double& xmin,const double& xmax ,
double& psixmin, double& psipxmin,
double& psixmax, double& psipxmax) {
//for infinite square well we set psi=0 at boundary
//and psip=+/—1

psizxmin = 0.0;
psipxmin = 1.0;
psixmax = 0.0;
psipxmax = —1.0;

// Initial values at xmin and xmax

}

//|———— trivial function: derivative of psi

double

f1(const double& x, const double& psi,const double& psip) {
return psip;

}

//——— the second derivative of wavefunction:
[/ psip(x)’ = psi(x)’’ = —(E-V) psi(x)
double

f2(const double& x, const double& psi,const double& psip) {
//— Schroedinger eq: RHS
return (V(x)—energy)*psi;

}

We note that if the potential becomes infinite for < xmin and/or x >xmax,
then this will be determined by the boundary conditions at xmin and/or
Xmax.

The main program is in the file sch.cpp. The code is listed below
and it includes the function integrate(psi, dx, Nx) used for the nor-
malization of the wave function. It performs a numerical integration of
the square of a function whose values psi[i] i=0,...,Nx-1 are given
at an odd number of Nx equally spaced points by a distance dx using
Simpson’s rule.

/1
/1

462 CHAPTER 10. SCHRODINGER EQUATION

// File: sch.cpp

// Integrate 1d Schrodinger equation from xmin to xmax.

// Determine energy eigenvalue and eigenfunction by matching
// evolving solutions from xmin and from xmax at a point xm.
// Mathing done by equating values of functions and their

// derivatives at xm. The point xm chosen at the left most
// turning point of the potential at any given value of the
// energy. The potential and boundary conditions chosen in
// different file.

/1

// Input: energy: Trial value of energy

// de: energy step, if matching fails de —> e+de, if
/] logderivative changes sign de —> —de/2
// xmin, xmax, Nx

/1

// Output: Final value of energy., number of nodes of

// wavefunction in stdout

// Final eigenfunction in file psi.dat

/] All trial functions and energies in file all.dat
/1

#include <iostream >
#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;
/]
const int P = 20001;
double energy;

/]
double V (const double& x);
double integrate(double* psi |,
const double& dx ,const int & Nx)
void
boundary (const double& xmin,const double& xmax ,
double& psixmin, double& psipxmin,
double& psixmax, double& psipxmax);
void
RKSTEP (double& t , double& x1,
double& x2 ,
const double& dt)
/1]

int main() {
int Nx,NxL,NxR;

10.3. BOUND STATES

double psi[P],psip[P];

double dx;

double xmin,xmax,xm; //left/right/matching points
double psixmin ,psipxmin ,psixmax ,psipxmax;

double psileft ,psiright ,psistep ,psinorm;

double psipleft,psipright,psipstep;

double de,epsilon;

double matchlogd,matchold,psiold,norm,x;

int iter,i,imatch,nodes;

string buf;

//Input:

cout < 7# Enter energy,de,xmin,xmax,Nx:\n";

cin >> energy>>de>>xmin>>xmax>>Nx;getline(cin,buf);
//need even intervals for normalization integration:
if (Nx %2 == 0) Nx++;

if (Nx >P){cerr << ”"Error: Nx > P \n”;exit(1);}
if (xmin>=xmax){cerr << "Error: xmin>=xmax\n”;exit (1) ;}
dx = (xmax—xmin) /(Nx—1);

epsilon = 1.0e—6;

boundary (xmin , xmax ,psixmin,psipxmin,psixmax ,psipxmax);
cout <H HHAHHHHHHHHAHSHEHEHHHHHHAHEHAHEHHEHHFHAEH D
cout <'# Estart= "< energy <’ de= KK de <K "\n”;

cout <'# Nx= 7 < Nx <7 eps= 7 < epsilon <L “\n”;
cout <’# xmin= "< zxmin < "xmax= "< xmax

KL dx= 7 <K dx < "\n”
cout <’# psi(xmin)= "<< psixmin

<L” psip (xmin)= "< psipxmin < "\n”;
cout <’# psi(xmax)= "<< psixmax

<L psip (xmax)= << psipxmax < ’\n”;

cout <# H#H#HHAHFHHAHFRHAHHRHAHFRHAHHRHAHHRHA RS\ D
// Calculate :
ofstream myfile(”all.dat”);
myfile.precision(17);
cout .precision(17);
matchold = 0.0;
for(iter=1;iter<=10000;iter++){
// Determine matching point at turning point from the
imatch=—1;
for (i=0;i<Nx;i++){
X = xmin + i * dx;
if (imatch < O && (energy-V(x)) > 0.0) imatch = ij;
}
if (imatch < 100 |l imatch >= Nx—100) imatch = Nx/5—1;
Xm xmin + imatch*dx;
NxL imatch+1;

left:

463

464

CHAPTER 10. SCHRODINGER EQUATION

NxR = Nx—imatch;

// Evolve wavefunction from the left:

psi [0] = psixzmin;

psip [0] = psipxmin;

psistep = psixmin;

psipstep = psipxmin;

for(i=1;i<NxL;i++)]{

x = xmin+(i—1)*dx; // this is x before the step
RKSTEP(x,psistep,psipstep, dx);
psi [i] = psistep;
psipli] = psipstep;
}
//use this to normalize eigenfunction to match at xm
psinorm = psistep;
psipleft = psipstep;
// Evolve wavefunction from the right:
psi [Nx—1]= psixmax;
psip[Nx—1]= psipxmax;

psistep = psixmax;
psipstep = psipxmax;
for (i=1;i<NxR;i++){

X = xmax—(i—1)*dx;

RKSTEP(x,psistep,psipstep,—dx);
psi [Nx—i—1] = psistep;
psip[Nx—i—1] = psipstep;
}
psinorm = psistep/psinorm;
psipright = psipstep;
//Renormalize psil so that psil(xm)=psir(xm)
for (i=0;i<NxL —1;i+4){
psi [i] *= psinorm;
psipl[i] *= psinorm;
}
psipleft *= psinorm;
//print current solution:
for (i=0;i<Nx;i++){
x = xmin + i *dx;
myfile < iter <K7 "<Kemnergy<L” ”
K< x RS THE IS
<psip[i] << \n”;

}

// matching using derivatives:

// Careful: this can fail if psi’(xm) = 0
// (Cuse also |del<le—6 criterion)
matchlogd =

10.3. BOUND STATES 465

(psipright—psipleft)/(abs(psipright)+abs(psipleft));
cout <K 7# iter ,energy,de.xm,logd: ”

<KL iter <
< energy L 7
< de L7
<< xm SO

<< matchlogd << "\n”’;
//break condition :
if (abs(matchlogd)<=epsilon ||
abs(de/energy)< 1.0e—12) break;

if (matchlogd * matchold < 0.0) de = —0.5%de;
energy += de;
matchold = matchlogd;

}//for(iter =1;iter <=10000;iter ++)
myfile.close();

/]

// Solution has been found and now it is stored:
norm = integrate(psi,dx,Nx);

norm = 1.0/sqrt(norm);

//for(i=0;i<Nx;i++) psi[i] *= norm;
// Count number of zeroes, add one and get energy level:
nodes = 1;
psiold = psi[0];
for(i=1;i<Nx—1;i++)
if (abs(psil[i]) > epsilon) {
if (psiold*psi[i] < 0.0) nodes++;
psiold = psilil;
}
//Print final solution:
myfile.open(”psi.dat”);
cout << ”Final result: E= 7 < energy
KL 7 n=" << nodes
< 7”7 norm= " << norm << endl;
if (abs(matchlogd) > epsilon)
cout << 7Final result: SOS: logd>epsilon. logd= ”

<< matchlogd << endl;
myfile < "# E= 7 < energy
KL 7 n=" << nodes
<< 7”7 norm = 7 << norm << endl;
for (i=0;i<Nx;i++){
Xx = xmin + i * dx;
myfile << x << 7 7 KL psi[i] <L "\n”;

}
myfile.close();

} //main ()

466 CHAPTER 10. SCHRODINGER EQUATION

/1
//Simpson’s rule to integrate psi(x)*psi(x) for proper
//normalization. For n intervals of width dx (n even)
//Simpson’s rule is:

//int (f(x)dx) =

//(dx/3) *(f(x_0)+4 f(x_1)+2 f(x 2)+...+4 f(x_{n—1})+f(x_n))
/1

// Input: Discrete values of function psi[Nx], Nx is odd
/] Integration step dx

//Returns: Integral(psi(x)psi(x) dx)

/]

double integrate(double* psi,
const double& dx ,const int& Nx) {
double Integral;

int i;

// zeroth order point:

i = 0;

Integral = psil[il]*psil[il;

//odd order points:

for(i=1;i<=Nx—2;i+=2) Integral += 4.0*psi[i]*psi[il;
//even order points:

for(i=2;i<=Nx—3;i+=2) Integral += 2.0*psi[il*psi[il;
//last point:

i = Nx—1;

Integral += psi[i]*psilil];

// measure normalization :

Integral *=dx/3.0;

return Integral;
}//integrate ()

The reproduction of the results of the previous section for the infinite
potential well is left as an exercise. The compilation and running of the
program can be done with the commands:

> g++ sch.cpp schInfSq.cpp rk.cpp —o s

> /s

Enter energy,de,xmin,xmax,Nx:

1 0.5 —1 1 2000

HHUHHHHHAHBHHH R R RS G HHH SR BH SR BEH SR B HH SRS
Estart= 1 de= 0.5

Nx= 2001 eps= 1e—06

xmin= —1 xmax= 1 dx= 0.001

#

psi(xmin)= 0 psip (xmin)= 1

10.3. BOUND STATES 467

psi(xmax)= 0 psip (xmax)= —1

HHHA RS R SR R R R R R R S R

iter ,energy.de.xm,logd: 1 1.0000 0.500 —0.601 —0.9748
iter ,energy,de,xm,logd: 2 1.5000 0.500 —0.601 —0.6412

iter ,energy ,de,xm,logd: 30 2.4674 —3.815E—6 —0.601 —1.0E-6
iter ,energy.de.xm,logd: 31 2.4674 1.907E-6 —0.601 2.7E-7
Final result: E= 2.467401504516602 n= 1 norm = 1.5707965025

We set xmin= -1, xmax = 1, Nx= 2000 and € = 1, Je = 0.5. The energy
of the ground state is found to be ¢; = 2.4674015045166016. The wave
function is stored in the file psi.dat and can be plotted with the gnuplot
command

gnuplot> plot “psi.dat” using 1:2 with lines

l T
/ iter=1 ——
091 / iter=2 - 1
‘ B iter=3 |
ol ,f"/ iter=4
0.7 / e N i
06 | ”/) |
= 0.5 [/
0.4 r ’// S |
03 / /]
02/ |
ok ‘ ‘ ‘

Figure 10.6: The convergence of the solutions to the solution of Schrédinger’s equa-
tion for the ground state of the infinite potential well according to the discussion on

page [:68.

The functions computed during the iterations of the algorithm are stored
in the file all.dat. The first column is the iteration number (here we
have iter = 0, ... 31) and we can easily filter each one of them with
the commands

468 CHAPTER 10. SCHRODINGER EQUATION

gnuplot> plot "<awk '$1==1" all.dat” using 3:4 w 1 t “iter=1"
gnuplot> replot "<awk ’'$1==2" all.dat” using 3:4 w 1 t “iter=2"
gnuplot> replot "<awk '$1==3" all.dat” using 3:4 w 1 t “iter=3"
gnuplot> replot "<awk '$1==4" all.dat” using 3:4 w 1 t iter=4"

which reproduce figure [10.6.

10.4 Measurements

The action of an operator A(&,p) on a state |¢)) can be easily calculated
in the position representation by its action on the corresponding wave
tunction ¢(z). The action of the operators

2)(x) = 2 (x) p(x) = —z%zﬁ(m) (10.29)
yield[
A&, p)(z) = Az, —i%)w(:c) . (10.30)

Using equation (10.9) we can calculate the expectation value (A) of the
operator A when the system is at the state [¢). Interesting examples
are the observables “position” z, “position squared” z?, “momentum”
p. “momentum squared” p?, “kinetic energy” T, “potential energy” V,
“energy” or “Hamiltonian” H = T + V whose expectation values are

“"We do not consider ordering problems of operators formed by products of non
commuting operators, e.g. zp.

10.4. MEASUREMENTS 469

given by the relations

@ = [w)e) de
-
@) = [) et v(e) da

o) = _m ()w@s
D = g [0 (-7m) v
h2 +OO
V) = s [@) el via) e
(H) = 2::;2 :O@ZJ*(x) (—88—22—1—1)()) Y(x)de. (10.31)

We remind the reader that we used the dimensionless x,p as well as
equations (10.15) and ([10.16). Especially interesting are the “uncertain-
ties” Ax? = (%) — (z)%, Ap? = (p?) — (p)* that satisfy the inequality
(“Heisenberg’s uncertainty relation”)

Ax - Ap > (10.32)

DN | —

In the previous section we described how to calculate numerically the
eigenfunctions of the Hamiltonian. If Hy(z) = Ev(x), we obtain that
(H) = (1/2mL?*)e. Other operators need a numerical approximation for
the calculation of their expectation values. If the values of the wave

function are given at N equally spaced points zi,z2,...,zy, then we
obtain (@) i) i)
O(z; - V(wiy1) — Y(Ti

. 5T (10.33)

where h = x;,1 — x; and

() (i) = 2¢() + (i)
oz h? '

(10.34)

470 CHAPTER 10. SCHRODINGER EQUATION

Both equations entail an error of the order of O(h?). Special care should
be taken at the endpoints of the interval [z1,zy]. As a first approach we
will use the naive approximations

OY(z1) Y(22) — (1)

Q

ox h
oY(zn) ~ Y(xn) —P(ry_1) (10.35)
Oz h)
and
P(x) blws) = 2(wg) +9(21)
0x? - h?
P(ay) Ylan) = 2(an) +(rn_o)
92 ~ 2 } (10.36)

The relevant program that calculates (z), (z?), (p), (p?), Az, Ap can be
found in the file observables.cpp and is listed below:

/1

// File observables.cpp
// Compile: g++ observables.cpp —o o
// Usage: ./o <psi.dat>

// Read in a file with a wavefunction in the format of psi.dat:
/] # E= <energy>

/] x1 psi(x1)

/] x2 psi(x2)

// Outputs expectation values:

// normalization Energy <x> <p> <x"2> <p”2> Dx Dp DxDp
// where Dx = sqrt(<x*2>—<x>A2) Dp = sqrt(<pr2>—<p>~2)
// DxDp = Dx * Dp

/1

#include <iostream >

"See the files observables.cpp, Derivatives.nb of the accompanying software.
There you can find formulas that have errors of O(h?). In the examples discussed
below, the influence of the O(h) error on the results is approximately at the fourth
significant digit.

10.4. MEASUREMENTS

#include <fstream >
#include <cstdlib >
#include <string>
#include <cmath>
using namespace std;

/1
double integrate(double* psi ,

const double& dx ,const int & Nx DE
!/

int main(int argc, char **argv){
const int P = 50000;
int Nx,i;
double xstep[P],psi[P],obs[P];
double xav, pav, x2av, p2av, Dx, Dp, DxDp,energy,h,norm;
string buf;
char *psifile;

if (arge != 2){
cerr <L 7Usage: 7 <L argv[0] << 7 <filename>\n";
exit (1) ;
}
psifile = argv([1];
ifstream ifile(psifile);
if (! ifile){
cerr < "Error reading from file 7 << psifile << endl;
exit (1) ;
}
cout <L 7# reading wavefunction from file:
< psifile <K endl;
ifile >> buf >> buf >> energy; getline(ifile,buf);

2

/]
//Input data: psi[x]

Nx = 0;
while(ifile >> xstep[Nx] >> psil[Nx]){
Nx++;
if (Nx == P){cerr << ”Too many points\n”;exit(1);}

}
if (Nx % 2 == 0) Nx——;

h = (xstep[Nx—1]-xstep[0]) /(Nx—1);
//

// Calculate :

//———— norm:

for(i=0;i<Nx;i++) obs[i] = psil[il*psilil;
norm= integrate(obs,h,Nx);

471

472 CHAPTER 10. SCHRODINGER EQUATION

[[—7—— &> ¢

for(i=0;i<Nx;i++) obs[i] = psi[il*psi[il*xstep[il;
xav = integrate(obs,h,Nx)/norm;

[[———— <p>/i:

obs[0] = psi[0]*(psi[1]—psi[0]) /h;
for(i=1;i<Nx—1;i++)

obs[i] = psi[i]*(psi[i+1]—-psi[i—1])/(2.0%*h);
obs[Nx—1]=psi[Nx —1]*(psi[Nx—1]—-psi[Nx—2])/h;

pav = —integrate(obs,h,Nx)/norm;

[|[—— — <xAM2>:

for(i=0;i<Nx;i++) obs[i] = psi[il*psi[il*xstep[il*xstepl[il;
x2av= integrate(obs,h,Nx)/norm;

[[———— <p~r2>:

obs[0] = psi[0]*(psi[2]—2.0*psi[1]+psi[0])/(h*h);
for(i=1;i<Nx—1;i++)
obs[i] = psil[i]*(psi[i+1]—2.0*psi[i]+psi[i—1])/(h*h);
obs[Nx—1] = psi[Nx—1] *
(psi[Nx—1]—2.0*psi[Nx—2]+psi[Nx—3])/(h*h);
p2av= —integrate(obs,h,Nx)/norm;

/| ———— Dx

Dx = sqrt(x2av — xav*xav);
/| ——— Dp

Dp = sqrt(p2av — pav*pav);
/|—————— Dx.Dp

DxDp = Dx*Dp;
// Print results:
cout.precision(17);
cout < 7# norm E <x> <p>/i <x"2> <p”2> Dx Dp DxDp\n”;
cout << norm <K 77
< energy < 77

< xav L7
<< pav L7
<L x2av <
< p2av KL 77
<< Dx L7
<< Dp L7
<< DxDp << endl;

} // main ()

/]

//Simpson’s rule to integrate psi(x).

//For n intervals of width dx (n even)

//Simpson’s rule is:

//int (f(x)dx) =

[/ (dx/3) *(f(x_0)+4 f(x_1)+2 f(x 2)+...+4 f(x_[(n—1}+f(x_n))

10.4. MEASUREMENTS 473

//

//Input: Discrete values of function psi[Nx], Nx is odd
[/ Integration step dx

//Returns: Integral(psi(x) dx)

//

double integrate(double* psi,
const double& dx ,const int& Nx) {
double Integral;

int ij;

// zeroth order point:
i = 0;
Integral = psil[il];

//odd order points:

for(i=1;i<=Nx—2;i+=2) Integral += 4.0*psi[il];
//even order points:

for(i=2;i<=Nx—-3;i+=2) Integral += 2.0*psi[il];
//last point:

i = Nx—1;

Integral += psi[il];

// measure normalization :

Integral *=dx/3.0;

return Integral,;
}//integrate ()

The program needs to read in the wave function at the points z, . .., Tyx_1
in the format produced by the program in sch.cpp. The first line should
have the energy written at the 3rd column, whereas from the 2nd line
and on there should be two columns with the (z;,v¢(z;)) pairs. It is not
necessary to have the wave function properly normalized, the program
will take care of it. If this data is stored in a file psi.dat, then the
program can be used by running the commands

> g++ observables.cpp —o obs
> ./obs psi.dat

The program prints the normalization constant of ¢(x), the value of the
energyll, (). (z2), (p)/i, (p?), Az, Ap and Az - Ap to the stdout.

Some details about the program: In order to read in the data from
the file psi.dat we use the variables argc and argv. These contain
the information on the number of arguments and the arguments of the

2The one read from the file. It is not calculated from the data.

474 CHAPTER 10. SCHRODINGER EQUATION

command line. If the command line comprises of n words, then argc=n.
These words are stored in an array of C-style strings argv[0], argv[1], ...
, argv[argc-1]. The first argument argv[0] is the name of the program,
therefore the lines

if (arge != 2){
cerr <K 7Usage: 7 << argv[0] << 7 <filename>\n”;
exit (1)

}

check if there are two arguments on the command line, including the
path to the executable file. If not, it prints an error message containing
the name of the program and exits:

> ./o
Usage: ./o <filename)>

The variables argc and argv must be declared as arguments to the main ()
function:

int main(int argc, char **argv){

}

The variable argv is an array of C-style stringsﬁ, i.e. and array of an
array of characters and can be declared as a pointer to a pointer to char.
The statements

ifstream ifile(”psi.dat”);
if (1 ifile){ exit(1); }

attempt to open a file psi.dat for input and, if this fails, the program is
terminated.
The statements

A C-style string, not to be confused with variables declared as string, is an array
of “null terminated” characters. This means that the sequence of characters ends with
the character '\0'. Functions that treat such objects, detect the end of the string using
this convention.

10.5. THE ANHARMONIC OSCILLATOR - AGAIN... 475

Nx = 0;
while(ifile >> xstep[Nx] >> psil[Nx]) {Nx++;}

read in a pair of doubles and store them in the arrays xstep and psi.
The loop terminates when it reaches the end of file or when it fails to
read input that can be converted to two doubles. In the end, Nx stores
the number of pairs read into the arrays.

The rest of the commands are applications of equations (10.33), (10.34),
(10.35) and ([10.36) to the formulas (10.31) and the reader is asked to
study them carefully. The program uses the function integrate in order
to perform the necessary integrals.

10.5 The Anharmonic Oscillator - Again...

In the previous chapter we studied the quantum mechanical harmonic
and anharmonic oscillator in the representation of the energy eigenstates
of the harmonic oscillator |n). In this section we will revisit the problem
by using the position representation. We will calculate the eigenfunctions
Yna(z) that diagonalize the Hamiltonian (9.15), which are the solutions

of the Schrodinger equation. By setting L = \/h/mw in equation (10.13),
equation (10.12) becomes

V' (x) = —(e —v(z))(x), (10.37)

where v(z) = 2%+ 2Az*. For A = 0 we obtain the harmonic oscillator with

where H,(z) are the Hermite polynomials.

We start with the simple harmonic oscillator where the exact solution
is known. The potential and the initial conditions are programmed in
the file schHOC.cpp. The changes that we need to make concern the
functions V(x), boundary(xmin, xmax, psixmin, psipxmin, psixmax,
psipxmax):

/]
[/ tile : schHOC. cpp

476 CHAPTER 10. SCHRODINGER EQUATION

double V (const double& x) {
return x*x;

f——— boundary conditions:

void

boundary (const double& xmin,const double& xmax ,
double& psixmin, double& psipxmin,

double& psixmax, double& psipxmax) {

psixmin = exp(—0.5*xmin*xmin);
psipxmin = —xmin*psixmin;
psixmax = exp(—0.5%xmax*xmax);
psipxmax = —xmax*psixmax;

The code omitted at the dots is identical to the one discussed in
the previous section. The initial conditions are inspired by the asymp-
totic behavior of the solutions to Schrodinger’sf{ equation v(z) ~ e **/,
Y (x) ~ —xp,(z). You are encouraged to test the influence of other
choices on the results. The results are depicted in figure where, be-
sides the qualitative agreement, their difference from the known values
(10.38) is also shown. This difference turns out to be of the order of
10~"-10"". The values of the energy ¢, for n < 14 are in agreement with
(10.38) with relative accuracy better than 10~7.

Then we calculate the expectation values (z), (z?), (p), (p*), Az and
Ap. These are easily calculated using equations (9.4) and (0.§). We see
that (x) = (n| (a" +a)/v2|n) =0, (p) = (n|i(a’ — a)/v/2|n) = 0, whereas

(22) = () = (n| %(aTa + aah) n) = (n + %) | (10.39)

The program observables.cpp calculates () = 0 with accuracy ~ 1076
and (p) = 0 with accuracy ~ 107'!. The expectation values (z?), (p?) are
shown in table .

Next, the calculation is repeated for the anharmonic oscillator for A\ =

0.5,2.0. We copy the file schHOC.cpp to schUOC.cpp and change the
potential in the function V(x):

’ 2 .) .
“In fact v, (z) ~ z"e~* /2 which we neglect. This does not influence the results for
the values of n studied here. Examine if this is necessary for larger values of n.

10.5. THE ANHARMONIC OSCILLATOR - AGAIN...

n (z°) (r*) Az - Ap

0| 0.500000000 | 0.4999977 | 0.4999989
1| 1.500000284 | 1.4999883 | 1.4999943
2| 2.499999747 | 2.4999711 | 2.4999854
3| 3.499999676 | 3.4999441 | 3.4999719
4| 4.499999607 | 4.4999082 | 4.4999539
5| 5.499999520 | 5.4998633 | 5.4999314
6| 6.499999060 | 6.4998098 | 6.4999044
7| 7.499999642 | 7.4995484 | 7.4997740
8| 8.499999715 | 8.4994203 | 8.4997100
9| 9.499999837 | 9.4992762 | 9.4996380
10 | 10.500000012 | 10.4991160 | 10.4995580
11 | 11.499999542 | 11.4994042 | 11.4997019
12 | 12.499999610 | 12.4992961 | 12.4996479
13 | 13.499999705 | 13.4991791 | 13.4995894
14 | 14.499999835 | 14.4990529 | 14.4995264

477

Table 10.2: The expectation values (z2), (p?) and the product Az - Ap for the simple
harmonic oscillator for the states |n), n =0,...,14.

478 CHAPTER 10. SCHRODINGER EQUATION

0.8 ‘ ‘ ‘ ‘ ‘ 3e-11
gl ——
0.7 /\] 2.5e-11 +
2e-11 |
06 | —
[15e-11 |
05 | / \] . le-11 |
= / \ 3
% 04 / 2 5e-12 |-
= / 2
03| 1 0
-5e-12 |
02
le-11 |
0.1r 1.5e-11 -
o ‘ ‘ ‘ s ‘ -2e-11
6 4 2 0 2 4 6 6 4 2 0 2 4 6
X
0.6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1.2e-07
19 ——
?\\ 1e-07 | /‘
041 /A f\ /ﬂ\ i \ 1 8e-08 - I 1
| i
0.2 ‘\ ‘f\‘u {\ \ 1 6e-08 | ‘M I {\
f\‘\\\‘\ | . 4e-08 / (]‘\
2 REINANEN. 2 / N
% 0 I A) 2e-08 | c‘/\\‘\\“
ES V] 3 1]
| \‘ ‘\ | “ \‘ | op ‘Q | | \‘ ‘\ /
U = YV,
\ | / \/ Vo
ol \ / vovovy | -4e-08 | Y Vol \ /‘
\/ -6e-08 - \V/ \/
el 0 NP L
4 6 -4 -2 0 2 4 6 8 8 -6 -4 -2 0 2 4 6 8
X X

Figure 10.7: The eigenfunctions (), ¥9(x) calculated by the program in sch.cpp,
schHOC. cpp. The plot to the right shows the difference of the results from the known

values ([L0.3§).

/]
// file : schUOC. cpp

double V (const double& x){
double lambda = 2.0;
return x*x+2.0*lambda*x*x*x*x;

The wave functions are plotted in figure [10.§. We see that by increas-
ing A the particle becomes more confined in space as expected. In table
we list the values of the energy ¢, for n = 0,...,9. By increasing),
€n()) is increased. Table lists the expectation values (x?), (p®) and
Az - Ap for the anharmonic oscillator for the states |n), n =0,...,9. By
increasing \, Az = y/(2?) is decreased and Ap = /(p?) is increased.
The product of the uncertainties Az - Ap seems to be quite close to the
corresponding values for the harmonic oscillator. The results should be

10.5. THE ANHARMONIC OSCILLATOR - AGAIN...

€n

€n,\=0.5

€n,A=2.0

OO IO O™ WN -~ O3

1.0000
3.0000
5.0000
7.0000
9.0000
11.0000
13.0000
15.0000
17.0000
19.0000

1.3924

4.6488

8.6550
13.1568
18.0576
23.2974
28.8353
34.6408
40.6904
46.9650

1.9031
6.5857
12.6078
19.4546
26.9626
35.0283
43.5819
52.5723
61.9598
71.7129

479

Table 10.3: The values of the energy ¢, for the harmonic and anharmonic oscillator
for A = 0.5,2.0. The values of the corresponding energy levels are increased with
increasing .

A=05 A= 2.0
n| (2% @) |[Az-Ap| (27 ®*) | Az-Ap
0| 0.3058 | 0.8263 | 0.5027 | 0.2122 | 1.1980 | 0.5042
1] 0.8013 | 2.8321 | 1.5064 | 0.5408 | 4.2102 | 1.5089
2| 1.1554 | 5.3848 | 2.4944 | 0.7612 | 8.1513 | 2.4909
3| 1.4675 | 8.2819 | 3.4862 | 0.9582 | 12.6501 | 3.4816
4| 1.7509 | 11.4545 | 4.4784 | 1.1370 | 17.5955 | 4.4728
5| 2.0141 | 14.8599 | 5.4707 | 1.3029 | 22.9169 | 5.4643
6| 2.2617 | 18.4691 | 6.4631 | 1.4590 | 28.5668 | 6.4560
7| 2.4970 | 22.2607 | 7.4555 | 1.6074 | 34.5103 | 7.4478
8| 2.7220 | 26.2184 | 8.4478 | 1.7492 | 40.7206 | 8.4397
9 | 2.9384 | 30.3289 | 9.4402 | 1.8856 | 47.1762 | 9.4316

Table 10.4: The expectation values (x2), (p?) and the product Az - Ap for the anhar-
monic oscillator for the states |n), n =0,...,9. Note the decrease of Ax = /{x?) and
the increase of Ap = /(p?) with increasing A. The uncertainty product Az - Ap seems
to take values close to the corresponding ones of the harmonic oscillator for both values
of A\. Compare the results in this table with the ones in table P.1.

480 CHAPTER 10. SCHRODINGER EQUATION

°
©
[
TR
NOOS

0 ——
.5
0 ——

Wo(x)
o
o

W1 ()

Wa(x)
W3(x)

W)
Ws(x)

Figure 10.8: The wave functions of the anharmonic oscillator Ypa(z) for n =
0,1,2,3,4,5 and A = 0.5,2.0 compared to the respective ones of the simple harmonic
oscillator. Increasing A yields stronger confinement of the particle in space.

compared with the ones obtained in table 0.1 of chapter 9.

10.6 The Lennard—Jones Potential

The Lennard—Jones potential is a simple phenomenological model of the
interaction between two neutral atoms in a diatomic molecule. This is

given by
V(z) = 4V {(%)12 _ (%)6} . (10.40)

10.6. THE LENNARD-JONES POTENTIAL 481

The repulsive term describes the Pauli interaction due to the overlapping
of the electron orbitals, whereas the attractive term describes the Van der
Waals force. The first one dominates at short distances and the latter at
long distances. We choose L = ¢ in (10.13) and define vy, = 2mo?V,/h2.

Equation (10.40) becomes

v(x) = 4y { (i) c G)G} : (10.41)

whereas the eigenvalues ¢, are related to the energy values E,, by

€, = 4vg (%)) (10.42)
0

The plot of the potential is shown in figure for vo = 250. The
minimum is located at z,, = 2'/% ~ 1.12246 and its value is —v,. The
code for this potential is in the file schLJ.cpp. The necessary changes to
the code discussed in the previous sections are listed below:

/]
[/ tile: schL].cpp
/]
double V (const double& x) {
double VO = 250.0;
return 4.0*V0*(pow(x,—12.0)—pow(x,—6.0));

}

//———— boundary conditions:

void

boundary (const double& xmin,const double& xmax
double& psixmin, double& psipxmin,

double& psixmax, double& psipxmax) {
psixmin = exp(—xmin*sqrt(abs(energy—V(xmin))));
psipxmin = sqrt(abs(energy—V(xmin)))*psixmin;
psixmax = exp(—xmax*sqrt(abs(energy—V(xmax))));
psipxmax = —sqrt(abs(energy—V(xmaX)))*psixmax;
}
or the integration we choose vy = and xmin = 0.7, 4 <xmax
For th tegrat h 0 250 and 0.7, 4

< 10. The results are plotted in figure [0.9. There are four bound states.

482 CHAPTER 10. SCHRODINGER EQUATION

n €n () (p) (x?) (p?) Az Ap | Az-Ap
0| -173.637 | 1.186 1.0e-10 | 1.415 | 34.193 | 0.091 | 5.847 0.534
11 -70.069 | 1.364 | 6.0e-11 | 1.893 | 56.832 | 0.178 | 7.539 1.338
2 -18.191 | 1.699 | -4.5e-08 | 2.971 | 39.480 | 0.291 | 6.283 1.826
3 -1.317 | 2.679 | -2.6e-08 | 7.586 9.985 | 0.638 | 3.160 2.016

Table 10.5: The results for the Lennard-Jones potential with vy = 250. We find 4
bound states.

The

first two ones are quite confined within the i otential well whereas

the last ones begin to “spill” out of it. Table 10.5 lists the results. We
observe that (p) = 0 within the attained accuracy as expected for real,
bound states].

10.

10.1

10.2

10.3

7 Problems

Add the necessary code to the program in the file well.cpp so
that the final wave function printed in the file psi.dat is properly
normalized. The integral fjl Y(z)yY(z)dx can be computed using
the Simpson rule

/ flx)de = (h/3) (f(wo) +4f(z1) +2f(x2) + ...
+2f(p_2) +4f(xp_1) + fx,).)

The interval [a, b] is discretized by n points xy = a,21,29,...,2, = b
where n is even. Each interval [z;, ;1] has width h.

Add the necessary code to the program in the file well.cpp in order
to calculate the number of nodes (zeroes) of the wave function. Us-
ing this result, the program should print the level n of the calculated
wave function ¢, (z).

Calculate the wave functions of the energy eigenstates for the po-
tential (10.27) with vy < 0. This is the problem of the (finite)

—+o0
0

®For ¢(+00) = (0) = 0 and ¢¥*(z) = ¢(z) we have that i(p)/h =
P(z)(d/dz)(x) do =

— [(d/da)p(x) () dz = 0.

10.7. PROBLEMS 483

2.5

2
15
1
0.5

0

-0.5

-1+ -

_15 | | | | | |

Figure 10.9: The four bound states for the Lennard-Jones potential with vy = 250.
The bold red line is the potential v(x)/vg. We plot the energy levels ¢, /vy and the
corresponding wave functions.

10.4

potential well. Solve the problem for vy = —100 and a = 0.3.
How many bound states do you find? Next study the influence
of the wall on the solutions. Introduce a parameter b so that
v(x > b) = +oo and study the dependence of the solutions on
b. Take b =0.35,0.4,0.5,0.6,0.8,1.0,1.5,2.0,2.5, 3.0 and compute the
difference of the first two energy eigenvalues. Estimate the accuracy
of the method. Next lower the value of |vy| until there is no bound
state. What is the relation between a and v, when this happens?
Compare with the analytic result which you know from your quan-
tum mechanics course.

Hint: For the largest values of b, take Nx > 1000. When convergence
is not achieved decrease epsilon.

Set vy = 1000, 5000 to the double well potential. Observe the (almost)
degenerate states and plot the wave functions ., = (1/v/2) (¢, ()%
Yni1(x)), where n is odd. Compare the results with the correspond-

484

CHAPTER 10. SCHRODINGER EQUATION

1 T T T T, mat T 0.8 A \p,_mat T
X f X

08 ‘ Llhjjllsc"%xg 1 06 | \ | quj?sschgx}

0.6 1 [

04 r

02 r

04 r
02 r

02t 1 02}
-04
06
-08 +

04 L
-0.6 VoY

0.8

f i it T

I Worp() ——
| 4 h

06 | R A

04t N

02t I

0.2 | ERIRIR I
04} A
0.6 | yord

-0.8
-6

Figure 10.10: Comparison of the results of the calculation of the wave functions
Yn () of the anharmonic oscillator for A = 2.0 using the methods described in problem
fl2. The wave functions 15" (z) are the wave functions v, x(z) calculated using the
methods described in this chapter. The wave functions ™ (x) are the wave functions
Yn.x(z) calculated using the methods described in chapter [for Hilbert space dimension
N = 40. Note the difference at large =. This is because the amplitudes ¥, x(z) = (x|n)x
for large = receive contributions from states |m) with large m (why?).

10.5

ing energy levels and eigenfunctions of the infinite square well.
Increase v, to the point where you cannot solve the problem nu-
merically.

Hint: For large v, the numerical effort is increased. For |z| < a
the wave function is almost zero and it is hard to obtain the non
trivial wave function for a < |z| < 1. As the accuracy deteriorates,
you should increase epsilon in the program so that convergence is
achieved relatively fast.

Repeat problems [3 and [using the program sch.cpp. Compare the
results.

10.7. PROBLEMS 485

10.6 Study the bound states in the potentials

0 a<|z|
v(ix)=<¢ =V b<lz|<a
Vi x| <b

for a=1,b=0.2,V, = 100,V; = 0,50 and

Vi <0
vie)=<2 -V 0<z<a
0 a<ux

for a = 1,V = 100, V; = +oo, 10,100 and

Vi oa< ||

Vo b<|z|<a
0 c<lz|<b

-V x| <ec

v(x) =

fora=1,0=0.7,¢=0.6,0.3,Vy = 100, V] = +00,10,0. In each case
calculate (z), (z%), (p), (p?), Az, Ap, Az - Ap.

10.7 Write a program that calculates the probability that a particle is
found in an interval [z, 23] given the wave function calculated by
the program in the file sch.cpp. Apply your program on the results
of the previous problem and calculate the intervals [—zy,x;] where
the probability to find the particle inside them is equal to 1/3.

10.8 Fill the tables and with the results for A = 0.2, 0.7, 1.0,
1.3, 1.6, 2.5, 3.0 and plot each expectation value as a function of .

10.9 A particle is under the influence of a potential

Vi) = 2 a2aa— 1) {% - ;} |

2m cosh? (ax)

The energy spectrum is given by

En:%&{%—()\—l—nf}

486

10.10

10.11

10.12

CHAPTER 10. SCHRODINGER EQUATION

for the values of n = 0,1,2,... for which F, > V,;,. Calculate the
energy levels ¢, of the bound states numerically by setting L =
1/ in equation (10.13) and A\ = 4. Plot the potential v(z) and
the corresponding eigenfunctions. Calculate the expectation values
of the position and momentum, the uncertainties in position and
momentum and their product. Repeat for A = 2,6, 8, 10.

Write a program that reads in a wavefunction and calculates the
expectation value of the Hamiltonian

() = [o) (g + V(@)) vl

by assuming that ¢ (z) is real. Calculate ¢,(x) for the harmonic
oscillator for n =1,...,10 and show (numerically) that (H),, = E,,.

Consider a particle in the Morse potential

V(z) = D, {(1 - e_a(”_”))2 — 1} :

Calculate the energy spectrum of the bound states. Choose L = 1/a,
T =ar, T, = are, \> = 2mD,./a*h? and obtain

v(z) = \? (e 277 — e (rmme)) |

Compare your results with the known analytic solutions

¢n(z) = NnZ)_n_l/Qe_z/QLELA—Qn—I(Z)

where z = 2\e™ @72 N, = nl\/(2\ —2n — 1)/(D(n + 1)['(2\ — n)),
and L%(z) is a Laguerre polynomial given by L%(z) = (z7*e*/n!)
(d"/dz")(z"T%e %) = (I'(a+2)/ (I'(n+2) I'(a— n—|—2)) Fi(—n,a+1, z).
You can take A = 4, z. = 1 and calculate (z), (z?), (p), (p?), Az, Ap,
Az - Ap.

Calculate the wave functions of the eigenstates of the Hamiltonian
for the anharmonic oscillator for A = 2.0 and n =0, ..., 15. Calculate

10.7. PROBLEMS 487

the wavefunctions using the program anharmonic.cpp of chapter g
for N = 15,40, 100 and compare the two results.

Hint: Write a program that calculates the energy eigenfunctions of
the simple harmonic oscillator

bn(z) = ——— e 0, (x)

2nnly/m

where the Hermite polynomials satisfy the relations
Hy1(z) =22H,(x) —2nH,_1(z), Ho(z)=1, H(x)=2x.

The program anharmonic.cpp calculates the eigenstates of the an-
harmonic oscillator

-1

[n)x =) _ HinJ[n] [m)

=0

by storing the coefficients of the linear expansion in the elements of
the array H[N] [N]. The same relation holds for the corresponding
wave functions ¢, x(x), ¥, (z). From 1,(z) and H[n] [m] calculate
Yna(x) for —8 < z < 8 and determine the accuracy achieved by the
calculation for each N. For which values of z do you obtain large
discrepancies between your results? Remember that for large z, the
states of high energy contribute more than for small z. Figure
can help you understanding this statement.

488 CHAPTER 10. SCHRODINGER EQUATION

Chapter 11
The Random Walker

In this chapter we will study the typical path followed by a ... drunk
when he decides to start walking from a given position. Because of
his drunkenness, his steps are in random directions and uncorrelated.
These are the basic properties of the models that we are going to study.
These models are related to specific physical problems like the Brownian
motion, the diffusion, the motion of impurities in a lattice, the large
distance properties of macromolecules etc. In the physics of elementary
particles random walks describe the propagation of free scalar particles
and they most clearly arise in the Feynman path integral formulation
of the euclidean quantum field theory. Random walks are precursors
to the theory of random surfaces which is related to the theory of two
dimensional “soft matter” membranes, two dimensional quantum gravity
and string theory [46].

The geometry of a typical path of a simple random walk is not classical
and this can be seen from two of its non classical properties. First, the
average distance traveled by the random walker is proportional to the
square root of the time traveled, i.e. the classical relation r = vt does
not apply. Second, the geometry of the path of the random walker has
fractal dimension which is larger than onefl. Similar structures arise in
the study of quantum field theories and random surfaces, where the
non classical properties of a typical configuration can be described by

appropriate generalizations of these concepts. For further study we refer
to [[7,45,46,47].

‘More precisely, the Hausdorff dimension of the simple random walk is dy = 2.

489

490 CHAPTER 11. THE RANDOM WALKER

In order to simulate a stochastic system on the computer, it is neces-
sary to use random number generators. In most of the cases, these are
deterministic algorithms that generate a sequence of pseudorandom num-
bers distributed according to a desired distribution. The heart of these
algorithms generate numbers distributed uniformly from which we can
generate any other complex distribution. In this chapter we will study
simple random number generators and learn how to use high quality,
research grade, portable, random number generators.

11.1 (Pseudo)Random Numbers

The production of pseudorandomf| numbers is at the heart of a Monte
Carlo simulation. The algorithm used in their production is deterministic:
The generator is put in an initial state and the sequence of pseudorandom
numbers is produced during its “time evolution”. The next number in the
sequence is determined from the current state of the generator and it is
in this sense that the generator is deterministic. Same initial conditions
result in exactly the same sequence of pseudorandom numbers. But
the “time evolution” is chaotic and “neighboring” initial states result in
very different, uncorrelated, sequences. The chaotic properties of the
generators is the key to the pseudorandomness of the numbers in the
sequence: the numbers in the sequence decorrelate exponentially fast
with “time”. But this is also the weak point of the pseudorandom number
generators. Bad generators introduce subtle correlations which produce
systematic errors. Truly random numbers (useful in cryptography) can
be generated by using special devices based on e.g. radioactive decay
or atmospheric noise[. Almost random numbers are produced by the
special files /dev/random and /dev/urandom available on unix systems,
which read bits from an entropy pool made up from several external
sources (computer temperature, device noise etc).

*We can’t define what a random process is, only what it isn’t. Outcomes which
lack discernable patterns are assumed to be random. If there is no way to predict
an event, we say it is random...Thus, there is no definition of what randomness is,
only definitions of what it isn’t. See Chris Wetzel, “Can you behave randomly?”,
http://faculty.rhodes.edu/wetzel/random/level23intro.html.

*There are online services which provide such sequences like www.random.org,
www.fourmilab.ch/hotbits/ and others.

http://faculty.rhodes.edu/wetzel/random/level23intro.html
http://www.random.org
http://www.fourmilab.ch/hotbits/

11.1. (PSEUDO)RANDOM NUMBERS 491

Pseudorandom number generators, however, are the source of ran-
dom numbers of choice when efficiency is important. The most popular
generators are the modulo generators (D.H. Lehmer, 1951) because of their
simplicity. Their state is determined by only one integer z;_; from which
the next one z; is generated by the relation

r; =ax;_1+ c(modm) (11.1)

for appropriately chosen values of a, ¢ and m. In the bibliography, there
is a lot of discussion on the good and bad choices of a, ¢ and m, which
depend on the programming language and whether we are on a 32-bit
or 64-bit systems. For details see the chapter on random numbers in [8].

The value of the integer m determines the maximum period of the
sequence. It is obvious that if the sequence encounters the same num-
ber after k steps, then the exact same sequence will be produced and &
will be the period of the sequence. Since there are at most m different
numbers, the period is at most equal to m. For a bad choice of a, c
and m the period will be much smaller. But m cannot be arbitrarily
large since there is a maximum number of bits that computers use for
the storage of integers. For 4-byte (32 bit) unsigned integers the max-
imum number is 232 — 1, whereas for signed integers 23! — 1. One can
provel] that a good choice of a, ¢ and m results in a sequence which is
a permutation {7, 7s,..., 7, } of the numbers 1,2,...,m. This is good
enough for simple applications that require fast random number gener-
ation but for serious calculations one has to carefully balance efficiency
with quality. Good quality random generators are more complicated al-
gorithms and their states are determined by more than one integer. If
you need the source code for such generators you may look in the bib-
liography, like in e.g. [4], [5], [8], [49], [50]. If portability is an issue,
we recommend the MIXMAX [49], RANLUX [50] or the Marsaglia, Za-
man and Tsang generator. The code for MIXMAX can also be found in
the accompanying software, whereas the MZT generator can be found in
Berg’s book/site [5]. RANLUX is part of the C++ Standard Library.

In order to understand the use of random number generators, but
also in order to get a feeling of the problems that may arise, we list
the code of the two functions naiveran() and drandom(). The first one
is obviously problematic and we will use it in order to study certain

‘See Knuth [48].

492 CHAPTER 11. THE RANDOM WALKER

type of correlations that may exist in the generated sequences of random
numbers. The second one is much better and can be used in non—trivial
applications, like in the random walk generation or in the Ising model
simulations studied in the following chapters.

The function naiveran() is a simple application of equation (1.1)
with @ = 1277, ¢ = 0 and m = 2'":

/1
// File: naiveran.cpp

//Program to demonstrate the usage of a modulo
// generator with a bad choice of constants
//resulting in strong pair correlations between
// generated numbers

//
static int ibm = 13337;
double naiveran() |
const int mult = 1277;
const int modulo = 131072 ; // equal to 2717

const double rmodulo = modulo;

ibm *= mult;
ibm = ibm % modulo;
return ibm/rmodulo;

}

The function drandom() is also an application of the same equation, but
now we set a = 7°, ¢ = 0 and m = 23! — 1. This is the choice of
Lewis, Goodman and Miller (1969) and provides a generator that passes
many tests and, more importantly, it has been used countless of times
successfully. One technical problem is that, when we multiply z,_; by a,
we may obtain a number which is outside the range of 4-byte integers
and this will result in an “integer overflow”. In order to have a fast
and portable code, it is desirable to stay within the range of the 23! — 1
positive, 32-bit (4 byte), signed integers. Schrage has proposed to use
the relation

a(z;—; mod q) —r | =2 it it is > 0

(ax;—1) mod m = _
a(r;y modgq)—r|®2| +m ifitis<0

(11.2)

where m = aq+r, ¢ = [m/a] and r = m mod a. One can show that

11.1. (PSEUDO)RANDOM NUMBERS 493

if r<gandif 0 < 2,1 < m—1, then 0 < a(z;-; mod q) < m — 1,
0 < rlzi_1/q] < m—1 and that (11.9) is valid. The period of the generator
is 231 —2 &~ 2x 10°. The proof of the above statements is left as an exercise
to the reader.

//
// File: drandom.cpp

//Implementation of the Schrage algorithm for a

// portable modulo generator for 32 bit signed integers
// (from numerical recipes)

//

//returns uniformly distributed pseudorandom numbers
/] 0.0 < x < 1.0 (0 and 1 excluded)

// period: 2*31-2 = 2 147 483 646

//
#include <iostream >
#include <fstream >
#include <iomanip>

using namespace std;
static int seed = 323412;
double drandom() {

const int a = 16807; //a = T7**b

const int m = 2147483647;//m = a*q+r = 2**31-1
const int q = 127773; //q = [m/a]

const int r = 2836; //r =m% a

const double £f = 1.0/m;

int P

double dr;

compute:

P = seed/q; [lp = [seed/q]

//seed = a*(seed % q)—r*[seed/q] = (a*seed) % m
seed = a*(seed—q*p) — r*p;

if (seed < 0) seed +=m;

dr=f*(seed—1);

if(dr <= 0.0 Il dr >= 1.0) goto compute;

return dr;

The line that checks the result produced by the generator is necessary
in order to check for the number 0 which appears once in the sequence.
This adds a 10 — 20% overhead, depending on the compiler. If you don’t
care about that, you may remove the line. Note that the number seed

494 CHAPTER 11. THE RANDOM WALKER

is in the global scope only for functions in this file (due to the static
keyword).

Now we will write a program in order to test the problem of correla-
tions in the sequence of numbers produced by naiveran(). The program
will produce pairs of integers (i, j), where 0 < 4, j < 10000, which are sub-
sequently mapped on the plane. This is done by taking the integer part
of the numbers L u with L = 10000 and 0 < u < 1 is the random number
produced by the generator:

//
//Program that produces N random points (i,j) with
//0<= 1i,j < 10000. Simple qualitative test of serial

// correlations of random number generators on the plane.
//

// compile:

//g++ correlations2ran.f90 naiveran.f90 drandom.{90

//
#include <iostream >
#include <fstream >
#include <iomanip>
#include <cstdlib >
using namespace std;

double naiveran() ,drandom();

int main(int argc,char **argv){
const int L = 10000;
int i,N;
N = 1000;
//read the number of points from the command line:
if (argc > 1) N = atoi(argv[1]);
for(i=1;i<=N;i++){
cout < int(L*naiveran()) < 7 7
< int(L*naiveran()) << '\n’;
//cout << int(L*drandom ()) << ” ”
// << int(L*drandom ()) << ’\n’;
}
} //main ()

The programﬁ can be found in the file correlations2ran.cpp. In order

*The variables argc and argv can be used in order to access the command line
arguments, see page 73, The elements in the array argv[] are strings (the “words” in

11.1. (PSEUDO)RANDOM NUMBERS 495

to test naiveran() we compile with the command

> g++ correlations2ran.cpp naiveran.cpp —O0 naiveran

whereas in order to test drandom() we uncomment the relevant lines as
follows

//cout << int(L*naiveran()) < 7 ”»
// < int(L*naiveran()) << ’\n’;
cout << int(L*drandom ()) < 7 7

<< int(L*drandom ()) << '\n’;

and recompile:

> g++ correlations2ran.cpp drandom.cpp —o drandom

These commands result in two executable files naiveran and drandom.
In order to see the results we run the commands

> ./naiveran 100000 > naiveran.out

> ./drandom 100000 > drandom.out

> gnuplot

gnuplot> plot “naiveran.out” using 1:2 with dots
gnuplot> plot “drandom.out” wusing 1:2 with dots

which produce 10° points used in the plots in figures and I1.9. In
the plot of figure 1.1, we see the pair correlations between the num-
bers produced by naiveran(). Figure shows the points produced
by drandom(), and we can see that the correlations shown in figure
have vanished. The plot in figure is qualitative, and a detailed,
quantitative, study of drandom() shows that the pairs (u;,u;41) that it
produces, do not pass the x? test when we have more than 107 points,
which is much less than the period of the generator. In order to avoid
such problems, there are many solutions that have been proposed and
the simplest among them “shuffle” the results so that the low order se-
rial correlations vanish. Such generators will be discussed in the next
section. The uniform distribution of the random numbers produced

the command line), and if they are to be used as numbers they have to be converted.
The function atoi() converts a string to an integer (cstdlib needs to be included).

496 CHAPTER 11. THE RANDOM WALKER

10000 T T T T T T T T T

9000 S

8000 [~ E

7000 A

6000 [~ -

5000 [A

4000 [B

3000 4

2000 [~ E

1000 A

0 L 1 | I} 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 11.1: Pairs of pseudorandom numbers produced by the function naiveran().
The correlations among pairs of such numbers show in the distribution of such pairs
on a clearly seen lattice.

can be examined graphically by constructing a histogram of the relative
frequency of their appearance. In order to construct the histograms we
use the script histogram which is written in the awk languagef] as shown
below:

> histogram —v £=0.01 drandom.out > drandom.hst

> gnuplot

gnuplot> plot “drandom.hst” using 1:3 with histeps
gnuplot> plot [:][0:] “drandom.hst” using 1:3 with histeps

The command histogram -v £=0.01 constructs a histogram of the data
so that the bin width is 1/0.01 = 100. The reciprocal of the number
following the option -v £=0.01 defines the bin width. The histogram is

’See the accompanying software in the Tools directory. Give the command
histogram -- -h which prints short usage instructions. I hope you remember how to
make the file histogram executable and put it in your path...

11.1. (PSEUDO)RANDOM NUMBERS 497

10000 o e e e e e e e e e
9000 1}{
8000 ‘ ?
7000 alf
6000 f-
5000 ffi
4000 [
3000 |
2000 |-

1000 [

ol e o
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 11.2: Pairs of pseudorandom numbers produced by the function drandom().
These points have a random distribution on the plane compared to those generated by
naiveran().

saved in the file drandom. out.

The results are shown in figures and Next, we study the
variance of the measurements, shown in figure [11.3. The variance is
decreased with the size of the sample of the collected random numbers.
This is seen in the histogram of figure I1.5. For a quantitative study of
the dependence of the variance on the size n of the sample, we calculate
the standard deviation

2
1 (1, (I
_ - > (=N ")], 11.3

where {z;} is the sequence of random numbers. Figure plots this
relation. By fitting

1
hlU/\'EID(n), (11.4)

498 CHAPTER 11. THE RANDOM WALKER

0.012 T T T T

0.008 4

0.006 -

0.004 —

0.002 4

0 1 1 1 1
0 2000 4000 6000 8000 10000

Figure 11.3: The relative frequency distribution of the pseudorandom numbers gen-
erated by drandom(). The distribution is uniform within (0, 1) and we see the deviations
from the average value.

to a straight line, we see that

1
~—. 11.5
o~ (11.5)
If we need to generate random numbers which are distributed accord-
ing to the probability density f(z) we can use a sequence of uniformly
distributed random numbers in the interval (0,1) as follows: Consider
the cumulative distribution function

OguEF(x):/x f)da' <1, (11.6)

which is equal to the area under the curve f(z) in the interval (—oo, 2] and
it is equal to the probability P(z’ < z). If u is uniformly distributed in the
interval (0,1) then we have that P(u' < u) = u. Therefore x = F~!(u) is
such that P(2’ < x) = u = F(x) and follows the f(z) distribution. There-
fore, if u; form a sequence of uniformly distributed random numbers,

11.1. (PSEUDO)RANDOM NUMBERS 499

0.0108 T T T T T T T T T

0.0106 E

0.0104 E

0.0102

0.01

0.0098

0.0096

0.0094

0.0092 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 11.4: Same as in figure [L1.3, but with the scale enlarged, so that the dispersion
of the histogram values is clearly seen.

then the numbers

form a sequence of random numbers distributed according to f(z).
Consider for example the Cauchy distribution

1 ¢
f($):;02+x2 c>0. (11.8)
Then N _
F(z) :/ f(a')da' = 5+ —tan”! (%) . (11.9)

According to the previous discussion, the random number generator is
given by the equation

x; = ctan (mu; — 7/2) (11.10)
or equivalently (for a more efficient generation)

x; = ctan (2mu;) . (11.11)

500 CHAPTER 11. THE RANDOM WALKER

0.018

0.016
0.014

0.012 ||

0.01 Fl
0.008

0.006

0.004 |- . U .

0002 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 11.5: The relative frequency distribution of the pseudorandom numbers gen-
erated by drandom() as a function of the sample size n for n = 1000, 10000, 100000.

The generator of Gaussian random numbers is found in many appli-
cations. The Gaussian distribution is given by the probability density

1
9@) = \/27{0(352/(202) (11.12)

The cumulative distribution function is

G(x)—/_;g(w’)dw’ 1—ir erf(\/_0> (11.13)

where erf(z) = [*_ exp{—(a’)?} dz' is the error function. The error func-
tion, as well as its inverse, can be calculated numerically, but this would
result in a slow computation. A trick to make a more efficient calculation
is to consider the probability density p(x,y) of two independent Gaussian
random variables x and y

1 1 1
p(z,y)dedy = oo ge”“"Q/(Q"Q) —%e’yQ/(2‘72) dedy = ﬁe”ﬂ/(z‘ﬂ) rdrdeg
(11.14)

11.1. (PSEUDO)RANDOM NUMBERS

501

In(o)
w
(6]

In(n)

12

Figure 11.6: The dependence of the variance ([l1.3) on n for the distribution of

random numbers generated by drandom().

where © = rcos ¢, y = rsin ¢. Then we have that

r 2w
u=G(r)= / / drdop(r,¢) =1— e /(207 ,
0o Jo

which, upon inversion, it gives

r=oy—2In(l —u).

(11.15)

(11.16)

Therefore it is sufficient to generate a sequence {u;} of uniformly dis-

tributed random numbers and take

ri = oy/—2In(u)

¢i = 2mujp
Tr; = T’Z‘COS¢Z'

Tip1 = 7T;Sing;.

(11.17)
(11.18)
(11.19)
(11.20)

502 CHAPTER 11. THE RANDOM WALKER

The algorithm shown above gives a sequence of pseudorandom numbers
{z;}, which follow the Gaussian distribution]. The program for ¢ = 1 is
listed below:

/!

// Function to produce random numbers distributed

// according to the gaussian distribution

[1g(x) = 1/(sigma*sqrt(2*pi))*exp(—x~2/(2*sigmar2))

/!

#include <cmath>

double drandom ();

double gaussran() {
const double sigma
const double PI2

1.0;
6.28318530717958648;

static bool newx = true;
static double x;
double r,phi;

if (newx) {

newx = false;
r = drandom();
phi = drandom()*PI2;
T = sigma*sqrt(—2.0%*log(r));
X = r*cos(phi);
return r*sin(phi);
}else {
newx = true;
return x;

}
}// gaussran () ;

The result is shown in figure [I1.7. Notice the static attribute for the
variables newx and x. This means that their values are saved between
calls of drandom. We do this because each time we calculate according to
(11.17). we generate two random numbers, whereas the function returns
only one. The function needs to know whether it is necessary to generate
a new pair (z;,x;11) (this is what the “flag” newx marks) and, if not, to
return the previously generated number, saved in the variable x. The
analysis of the results is left as an exercise to the reader.

"It can be shown that x;, z; 1 are statistically independent.

11.2. USING PSEUDORANDOM NUMBER GENERATORS 503

0.4 . .

0.35

0.3 r

0.25

0.2

0.15

0.1

0.05

Figure 11.7: The distribution of pseudorandom numbers generated by gaussran()
for o = 1 and ¢ = 2. The histogram is superimposed to the plot of ({11.12).

11.2 Using Pseudorandom Number Generators

The function drandom() is good enough for the problems studied in this
book. However, in many demanding and high accuracy calculations, it is
necessary to use higher quality random numbers and/or have the need
of much longer periods. In this and the following section we will discuss
how to use two high quality, efficient and portable generators which are
popular among many researchers.

The first one is part of the C++ Standard Library. It is a very high
quality, portable random number generator that was proposed by Martin
Liischer [50] and it is called RANLUX. The original code has been written
by Fred James and you can download it in its original form from the
links given in the bibliography [50]. The generator uses a subtract-
with-borrow algorithm by Marsaglia and Zaman [52], which has a very
large period but fails some of the statistical tests. Based on the chaotic
properties of the algorithm, Liischer attributed the problems to short time

504 CHAPTER 11. THE RANDOM WALKER

autocorrelations and proposed a solution in order to eliminate them.

In order to use it, you have to learn a little bit about the interface to
random number generator engines in the C++ Standard Library [11]. En-
gines are the sources of random number generators and they are classes
which implement well known algorithms for pseudo random number
generation. They generate integer values uniformly distributed between
a minimum and maximum value. These numbers are processed by distri-
butions, which are classes that transform them into real or integer random
values distributed according to a desired random distribution. Distribu-
tions can use any available engine in order to produce random numbers.

There are several engines available in the standard library, like the
linear congruential, Mersenne twister, subtract with carry and RANLUX.
Similarly, there are several distributions available, like the uniform, gaus-
sian, exponential, gamma, x? and others.

In order to produce a sequence of random numbers, the procedure is
always the same: One has to instantiate a random number engine object
and a distribution object. In the following, minimal, program, rlx is the
random number engine object and drandom the distribution.

#include <random>
using namespace std;
int main() {

ranlux48 rlx;
uniform_real distribution<double> drandom;
double x = drandom(rlx);

A random number is returned by the call to drandom(rlx), where
the distribution drandom uses the engine rlx in order to calculate it.
The engine rlx uses the RANLUX algorithm, something that is de-
termined by the ranlux48 declaration. The distribution drandom pro-
duces uniformly distributed random numbers in the intervalﬁ [0,1) (0

*Distributions can be parametrized by defining appropriate parameters. For example,
uniform_real_distribution<double> drandom(a,b) produces numbers in the [a,b) in-
terval, normal_distribution <double> gaussran(u,o) produces numbers distributed
according to exp [—(x — p)?/(20?)]/(0+/27) etc. If the parameters are omitted, then they
take default values (here a=0, b=1, =0, o=1)

11.2. USING PSEUDORANDOM NUMBER GENERATORS 505

included, 1 excluded) of the type double. This is determined by the
uniform _real distribution <double> declaration.

Contrary to the simple modulo generator, the state of a high qual-
ity random number generator engine is determined by more than one
numbers. We should learn how to

e start from a new state

e save the current state

e restart from a previously saved state
e obtain the random numbers.

Saving and reading the state of a generator is very important when we
execute a job that is split in several parts (checkpointing). This is done
very often on computer systems that set time limits for jobs or when our
jobs are so long (more than 8-10 hours) that it will be painful to loose
the resources (time and money) spent for the calculation in the case of a
computer crash. If we want to restart the job from exactly the same state
as it was before we stopped, we also need to restart the random number
generator from the same state.

Starting from a new, fresh state is called seeding. The simplest form
of seeding is done by providing a single integer value to the seed()
operation of the engine. For example the first of the statements below

rlx.seed(1234);
double x= drandom(rlx);

sets the state of the engine rlx in a state determined by the seed 1234.
Different seeds are guaranteed to put the engine into different states and
the same seed will start the engine from the same state. That means
that by repeating the above statements in different parts of the program,
we will store the same value into x. A call to rlx.seed() without an
argument puts the engine into its default state.

Sometimes we need to initialize the random number generator from
as a random initial state as possible, so that each time that we run our
program, a different sequence of random numbers is generated. For
Unix like systems, like the GNU/Linux system, we can use the two special
files /dev/random and /dev/urandom in order to generate unpredictable

506 CHAPTER 11. THE RANDOM WALKER

random numbers. These generate random bits from the current state of
the computer. A function that returns a positive int as a seed by using
/dev/urandom is shown below:

#include <unistd.h>

#include <fentl.h>

int seedby_urandom() {
int ur,fd;
fd = open(”/dev/urandom”, O_RDONLY);
read (fd,&ur,sizeof(int));
close(fd);
return (ur>0)?ur:—ur;

}

It uses the low level C functions open and read for reading binary data.
This is because /dev/urandom just provides a random set of bits. We
need to determine the amount of data read into the int variable ur and
for that, sizeof (int) is used in order to return the number of bytes in
the representation of an int.

If we need to work in an environment where the special file /dev/urandom
is not available, it is possible to seed using the current time and the pro-
cess number ID. The latter is necessary in case we start several processes
in parallel and we need different seeds. Check the file urandom.cpp in
order to see how to do itf.

In order to save the current state of the random number generator
engine, we can simply write to a stream like in

ofstream oseed(’seeds”);
oseed <K rlx << endl;

which writes the state of the engine in the file seeds. In order to restart
the generator from a saved state, we can read from a stream like in

ifstream iseed(’seeds”);
iseed >> rlx;

*You can also use the operating system in order to pass random seeds to your
program. Try the commands set x = "< /dev/urandom tr -dc "[:digit:]" | head
-c9 | awk 'printf "%d",$1'" ; echo $x and set x = “perl -e 'srand();print
int (100000000*rand());'" ; echo $x. Use the value of the variable x for a seed.

11.2. USING PSEUDORANDOM NUMBER GENERATORS 507

which reads the state of the engine stored in the file seeds. After this
statement, the sequence of random numbers will be exactly the same as
the one generated after we saved the state before.

The code in the file test_ranlux.cpp implements all of the above
tasks and we list it below:

#include <random>
#include <iostream >
#include <fstream >
using namespace std;

int main(){
//The object rlx is a RANLUX random number engine:
ranlux48 rlx;
//drandom is a distribution that produces uniformly
// distributed numbers in [0,1)
uniform_real_distribution<double> drandom;

//
//random numbers starting from the default state:
cout << ranlux: 7;
for(int i=1;i<=5;i++) cout << drandom(rlx) < 7 7;
cout << endl;
//
// Seeding by a seed:
rlx.seed(377493872);
cout < 7seed : 7
for(int i=1;i<=5;i4++4) cout << drandom(rlx) < 7 7;
cout << endl;
//
//Saving the state to a file ”seeds”:
ofstream oseed(’seeds”);
oseed << rlx <K endl;
cout << "more : 7
for(int i=1;i<=5;i++) cout << drandom(rlx) < 7 7;
cout << endl;
!/
//Reading an old state from the file seeds:
ifstream iseed(”seeds”);
iseed >> rlx;
cout <K "same : 7,
for(int i=1;i<=5;i++) cout << drandom(rlx) < 7 7;
cout <K endl;

} // main

508 CHAPTER 11. THE RANDOM WALKER

Use the following commands|] in order to compile and see the results:

> g++ —std=c++11 test_ranlux.cpp —o ranlux

> ./ranlux

ranlux: 0.101746 0.465305 0.739500 0.861557 0.196622
seed : 0.471439 0.379696 0.887275 0.642664 0.996368
more : 0.980649 0.0869633 0.231573 0.695236 0.226594
same : 0.980649 0.0869633 0.231573 0.695236 0.226594

11.3 The MIXMAX Random Number Genera-
tor

The MIXMAX random number generator is a very high quality and
efficient random number generator proposed by K. Savvidy [49]. It is
faster than RANLUX and it has a huge period which, for its default
function, is larger than 10%%°. Moreover, it passes all known statistical
tests for statistically independent sequences of random numbers and it
is very cleverly and efficiently implemented. It generates sequences of
random numbers by using a relation of the form

N
j=1

where u;(t) € [0,1). The matrix A;; has integer entries and has special
properties. The trajectories of the above map have very strong chaotic
behavior and this is the reason for the high quality of the produced ran-
dom numbersf]. By a clever choice of the matrix A;j, the computational
cost per random number using (11.21) does not grow with N [49]. Tt
is particularly useful for multi-threaded simulations where independent
sequences of random numbers must be simultaneously generated. For all
these properties, the MIXMAX generator is expected to be the generator
of choice in many scientific applications.

“The flag -std=c++11 is necessary in order to instruct the compiler that the C++11
standard is used.

“"The generator came out of the study of special dynamical systems, namely Yang-
Mills classical mechanics by G. Savvidy and N. Ter-Arutyunyan Savvidy, J.Comput.Phys.
97 (1991) 97.

11.3. THE MIXMAX RANDOM NUMBER GENERATOR 509

The code of the generator is available from the site mixmax.hepforge.org
and it has a C++ interface in the file mixmax.cpp. The accompanying soft-
ware of this chapter contains a copy of the generator’s code in the sub-
directory MIXMAX. In order to compile code with the MIXMAX random
generator engine you need most of the C++ and C files in that directory.
Using the generator, seeding it and saving/reading its state can be done
as in the example code below:

#include <iostream >
#include <fstream >
#include <iomanip>
#include <random>
using namespace std;

#include “MIXMAX/mixmax.hpp”

int main() {
//The object mxmx is a MIXMAX random number engine:
mixmax_engine mxmx(0,0.,0.1);
//The object drandom is a uniform distribution:
uniform_real_distribution<double> drandom;
//
//Random numbers after seeding with a chosen seed:
nxmx . seed(1234) ;
cout << "mixmax: 7;
for(int i=1;i<=b5;i++) cout << drandom(mxmx) << 7 7;
cout << endl;
//
//Saving the state to a file ”seeds”:
ofstream oseeds(”’seeds”);
oseeds << mxmx << endl;oseeds.close();
cout << ”more : 7
for(int i=1;i<=5;i++) cout << drandom(mxmx) << 7 7;
cout << endl;
/]
//Reading an old state from the file seeds:
ifstream iseeds(”’seeds”);
iseeds >> mxmx; iseeds.close();
cout <L ”same : 7
for(int i=1;i<=5;i++) cout << drandom(mxmx) << 7 7;
cout << endl;

} //main ()

https://mixmax.hepforge.org/

510 CHAPTER 11. THE RANDOM WALKER

Notice that the code assumes that the file mixmax . hpp is in the relative path
MIXMAX/mixmax.hpp, in the subdirectory where all the code of MIXMAX
is put in the examples of this chapter. Then you can compile and run
the code with the commands:

> gt++ —std=c++11 test_mixmax.cpp MIXMAX/mixmax.cpp —0 mxmx
> . /mxmx

mixmax: 0.600514 0.079735 0.80067 0.657467 0.286080

more : 0.758103 0.107861 0.20206 0.513634 0.763578

same : 0.758103 0.107861 0.20206 0.513634 0.763578

As we mentioned in the previous section, the C++ Standard library
provides several probability distributions, including the Gaussian. In the
following program we show how to generate random numbers using
MIXMAX distributed according to

zf,u,2
flz) = ! e T (11.22)

_0 27

and test the distribution by histogramming the results:

#include <iostream >
#include <fstream >
#include <iomanip>
#include <random>
using namespace std;

#include “MIXMAX/mixmax.hpp”

int seedby_urandom() ;

int main(int argc,char **argv){
/1
//Number of random numbers that will be generated:
int Nrand=2000000;
//Mean value and standard deviation of gaussian distribution:
const double mean=0.0,sigma=1.0;
/1
//The object mxmx is a MIXMAX random number engine:
mixmax_engine mxmx(0,0,0,1);
mxmx . seed(seedby_urandom()); //seed mixmax using /dev/urandom
// The object gaussran is a gaussian distribution:
normal_distribution<double> gaussran(mean s sigma) ;

11.3. THE MIXMAX RANDOM NUMBER GENERATOR

//1f provided at the command line, read Nrand:
if (argc>1) Nrand = atoi(argv[1]);
/]

511

// Calculate random numbers and make a histogram:
const double xm=6.0;//histogram in [—xm,xm]

const int nh=200; //number of histogram bins
int hist[nh];

double x,dx;

int ih;

const double PI = 2.0*atan2(1.0,0.0);
const double sigma2 = 2.0*sigma*sigma;

dx = 2.0*xm/nh;
// Calculate histogram: hist[ih] counts # occurences
for (ih=0;ih<nh;ih++) hist[ih]=0;
for(int i=0;i<Nrand;i++)/{
x = gaussran(mxmx) ;
//skip if out of range:
if(x < —xm |l x > zm) continue;
ih=int ((x+xm) /dx);
if (ih<O0llih>=nh){cerr<<”ih out of range\n”;exit(1);}
hist[ih]++;
}
// print results: The normalized histogram and compare to the
/] gaussian distribution.
cout.precision(17);
for (ih=0;ih<nh;ih++){
x = ih*dx — xm + 0.5*dx;

cout <K x L7
<L hist[ih] L7
<< double(hist[ih]) /dx/Nrand L7

<< 1.0/sqrt(PI*sigma2)*
exp(—(x—mean) *(x—mean) /sigma2) << '\n’;

}
} //main ()

// Use /dev/urandom for more randomness.
#include <unistd.h>
#include <fentl.h>
int seedby_urandom() {
int ur,fd;
fd = open(”/dev/urandom”, O_RDONLY);
read (fd,&ur,sizeof(int));
close(£fd);
return (ur>0)?ur:—ur;

512 CHAPTER 11. THE RANDOM WALKER

The above program can be found in the file test_gaussran.cpp. The
MIXMAX files are assumed to be in the subdirectory MIXMAX/. You can
change the mean p and standard deviation o of the distribution by chang-
ing the values of the variables mean and sigma respectively. Then you
can compile and run the program with the commands:

> g++ —std=c++11 test_gaussran.cpp MIXMAX/mixmax.cpp —O0 mxmx

> ./mxmx > gauss.dat

> gnuplot

gnuplot> plot “gauss.dat” using

gnuplot> plot “gauss.dat” using
”gauss.dat” using

with lines
title “histogram”, \
with lines title “f(x)”

_—
ISV)

11.4 Random Walks

Consider a particle which is located at one of the sites of a two dimen-
sional square lattice. After equilibrating at this position, it can jump
randomly to one of its nearest neighbor positions. There, it might need
some time to equilibrate again before jumping to a new position. During
this time, the momentum that it had at its arrival is lost, therefore the
next jump is made without “memory” of the previous position where it
came from. This process is repeated continuously. We are not inter-
ested in the mechanism that causes the jumpingf], and we seek a simple
phenomenological description of the process.

Assume that the particle jumps in each direction with equal proba-
bility and that each jump occurs after the same time 7. The minimum
distance between the lattice sites is a (lattice constant). The vector that
describes the change of the position of the particle during the i-th jump
is a random variable & and it always has the same magnitude |§:\ = a.
This means that, given the position 7, of the particle at time ¢, = kr, its
position 74, at time ty1 = (k+1)7 =1t + 7 is

Frs1 = 7 + &k s (11.23)

“It could be e.g. thermally stimulated sound waves, the quantum tunneling effect
etc.

11.4. RANDOM WALKS 513

where
az with probability
-~) —az with probability
Sk = ay with probability
—ay with probability

(11.24)

e N N e e

The vectors f; and E; are uncorrelated for ¢ # j and we have that
(& &) = (&) (E). (11.25)
The possible values of ¢ are equally probable, therefore we obtain
(&) =0. (11.26)

This is because the positive and negative terms in the sum performed
in the calculation of (£;) occur with the same frequency and they cancel
each other. Therefore (f': . §j> = 0 for ¢ # j. Since the magnitude of the
vectors || = a is constant, we obtain

(& &) =’ (11.27)
The probability for a path Cy of length N to occur isf]

p(Cy) = L (11.28)

2N
where z = 4 is the number of nearest neighbors of a lattice site. This
probability depends on the length of the path and not on its geometry.
This can be easily seen using the obvious relation p(Cyi1) = p(Cy),
since there are exactly z equally probable cases. The partition function
is
Iy =2V, (11.29)

and it counts the number of different paths of length N.
After time t = N7 the particle is displaced from its original position
by

N
R=Y"¢. (11.30)
=1

“Le. after time ¢ = N7, not the physical length of the path formed by the links that
the particle has crossed. We also count the jumps to sites that the particle has already
visited.

514 CHAPTER 11. THE RANDOM WALKER

The average value of the displacement vanishes

N

(R) =Y (&) =0. (11.31)

=1

The expectation value of the displacement squared is non zero

N N
(R = (R-Ry=Y (&-&§) =a*> 6 =a>N. (11.32)

ij=1 ij=1

The conclusion is that the random walker has been displaced from its
original position rather slowly

Ryms = V(R2) = aV/N x V1. (11.33)

For a particle with a non zero average velocity we expect that R,,,s o t.
Equation (11.33) defines the critical exponent v

(R?) ~ N (11.34)

where ~ means asymptotic behavior in the limit N — oco. For a classical
walker v = 1, whereas for the random walker v = %

The Random Walker (RW) model has several variations, like the Non
Reversal Random Walker (NRRW) and the Self Avoiding Walk (SAW)
. The NRRW model is defined by excluding the vector pointing to the
previous position of the walker and by selecting the remaining vectors &
with equal probability. The SAW is a NRRW with the additional require-
ment that, when the walker ends in a previously visited position, the ...
walking ends! Some models studied in the literature include, besides
the infinite repulsive force, an attractive contribution to the total energy
for every pair of points of the path that are nearest neighbors. In this
case, each path is weighted with the corresponding Boltzmann weight
according to equation (12.4).

For the NRRW, equation ([1.34) is similar to that of the RW, i.e.
v = 1. Even though the paths differ microscopically, their long distance
properties are the same. They are examples of models belonging to the
same universality class according to the discussion in section

This is not the case for the SAW. For this system we have that [53]

<R2>SAW ~ N2V v = Z , (1135)

11.4. RANDOM WALKS 515

therefore the typical paths in this model are longer than those of the RW.
If we introduce a nearest neighbor attraction according to the previous
discussion, then there is a critical temperature 3. such that for g < f.
we have similar behavior given by equation ([11.35), whereas for 5 > 3,
the attractive interaction dominates, the paths collapse and we obtain
v =1/3 < vgw. For = . we have that v = % For more information
we refer the reader to the book of Binder and Heermann [7].

In order to write a program that simulates the RW we apply the

following algorithm:
1. Set the number of the random walks to be generated
2. Set the number of steps of each walk
3. Set the initial position of the walk
4

. At each step on the walk, pick a random direction with equal prob-
ability

5. After the walk is completed, measure ﬁ R?, etc

6. After all walks have been generated, compute the expectation values
of the measured quantities and the statistical error of their measure-
ment.

All we need to explain is how to program the choice of “random
direction”. The program is in the file rw.cpp

#include <iostream >
#include <fstream >
#include <iomanip>
#include <random>
#include <thread>
using namespace std;

#include “MIXMAX/mixmax.hpp”

int seedby_urandom() ;
int main(){
const int Nwalk
const int Nstep
double x,y;

1000;
100000;

516 CHAPTER 11. THE RANDOM WALKER

//
mixmax_engine mxmx(0,0,0,1);
uniform_real distribution<double> drandom;
mxmx . seed (seedby_urandom ()) ;
ofstream dataR(’dataR”);
ofstream data;
dataR.precision(17) ;data.precision(17);
/]
// Generate random walks:
for (int iwalk=1;iwalk<=Nwalk;iwalk++){
x=0.0;y=0.0;
data.open(”’data”);
for(int istep=1;istep<=Nstep;istep++){
int ir = int(drandom(mxmx)*4) ;
switch (ir) {
case O:
x += 1.0;
break ;
case 1:
x —= 1.0;
break;
case 2:
y += 1.0;
break;
case 3:
y —= 1.0;
break;
}//switch(ir)
data << x <K 7 7 Ky <L endl;
}//for(istep=1;istep<=Nstep;istep++)
data.close();
dataR << x*x+y*y << endl;
//wait for 2 seconds until next walk:
this_thread::sleep_for(chrono::seconds(2));
}//for (iwalk =1;iwalk<=Nwalk ; iwalk ++)
dataR.close();
} // main ()
// Use /dev/urandom for more randomness.
#include <unistd.h>
#include <fecntl.h>
int seedby_urandom() {
int ur,fd;
fd = open(”/dev/urandom”, O_RDONLY);
read (fd,&ur,sizeof(int));
close(fd);

11.4. RANDOM WALKS o017

return (ur>0)?ur:—ur;

}

The length of the paths is Nstep and the number of the generated paths
is Nwalk. Their values are hard coded and a run using different values
requires recompilation. The results are written to the files dataR and
data. The square of the final displacement of the walker R? is written
to dataR and the coordinates (z,y) of the points visited by the walker in
each path is written to data. The file data is truncated at the beginning
of each path, therefore it contains the coordinates of the current path
only.

Each path is made of Nstep steps. The random vector éstep is chosen

and it is added in the current position 7istep = (2,). The choice on &;sep
is made in the line

int ir = int(drandom(mxmx)*4) ;

where the variable ir = 0,1, 2,3 because the function int returns the
integer part of a double. The values of ir correspond to the four possible
directions of ,;? We use the construct switch(ir) in order to move in
the direction chosen by ir. Depending on its value, the control of the
program is transferred to the command that moves the walker to the
corresponding direction.

Compiling and running the program can be done with the commands

> gt++ —std=c++11 rw.cpp MIXMAX/mixmax.cpp —0 rw
> /rw

Because of the command[]

this_thread::sleep_for(chrono::seconds(2));

the program temporarily halts execution for 2 seconds at the end of each
generated path (you should remove this line at the production stage).
This allows us to monitor the generated paths graphically. During the
execution of the program, use gnuplot in order to plot the random walk
which is currently stored in the file data:

“This is why we #include <thread>.

518 CHAPTER 11. THE RANDOM WALKER

gnuplot> plot “data” with lines

Repeat for as many times as you wish to see new random walks. The
automation of this process is taken care in the script eternal-rw:

> rw &
> ./eternal-rw &
> killall rw eternal—rw gnuplot gnuplot_x11

The last command ends the execution of all programs.

100

50

-100 1

-100 -50 0 50 100

Figure 11.8: Four typical paths of the RW for N = 10000.

Some typical paths are shown in figure [11.8. Figure shows the re-
sults for the expectation value (R?) for N = 10, ...,100000 which confirm
equation (11.32) (R?) = N. You can reproduce this figure as follows:

1. Set the values of Nwalk and Nstep in the file rw.cpp. Delete the
commands sleep_for and data << x << " " << y and compile the
code.

11.4. RANDOM WALKS 519

16

T
\%\
1

14]

12 /#’/

10 t o]

In <R2>

2 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16

In N

Figure 11.9: Numerical confirmation of the relation (R?) = N for N = 10, ..., 100000.
The straight line is the fit of the data to the function y = ax with a = 0.9994(13).

2. Run the program and analyze the data in the file dataR:

> /rw
> awk ’{av += $1}END{print av/NR}’ dataR

Write the results in a file r2.dat in two columns with the length of
the paths N in the first column and with (R?) in the second. The
command] {av+=$1} in the awk program adds the first column of
each line of the file dataR to the variable av. After reading the whole
file, the command END{print av/NR}, prints the variable av divided
by the number of lines in the file (NR = “Number of Records”). This
is a simple way for computing the mean of the first column of the
file dataR.

3. Use a linear squares method in order to find the optimal line y =

®The command av+=$1 is equivalent to av=av+$1.

520 CHAPTER 11. THE RANDOM WALKER

az +b going through the points (In N.,In(R?)). You can also use the
fit command in gnuplot as follows:

gnuplot> fit a*x+b "r2.dat” u (log($1)):(log($2)) via a,b

4. Construct the plot with the command:

gnuplot> plot a*x+b, ’r2.dat” u (log($1)):(log($2)) w e

The obtained results are meaningless without their statistical errors. Since
each measurement is statistically independent, the true expectation value
is approached in the limit of infinite measurements with a speed propor-
tional to ~ 1/v/M, where M is the number of measurements. For the
same reasonﬁ, the statistical error is given by equation (), e.g.

M M 2

§(R?) = Ml—l %Z(Rﬁ)Q— iZRg . (11.36)

=1 =1

We can add the calculation of the error in the program in rw.cpp or we
can leave this task to external utilities. For example we can use the awk
script, which is written in the file average:

#!/usr/bin/awk —f
{
av += $1; # the sum of data
er += $1*3$1; # the sum of squares of data

}

END{
av /= NR; # NR = ”Number of Records” = number of lines
er /= NR;
formula for error of uncorrelated measurements
er = sqrt((er — av*av)/(NR—1));
print av, "+/—7, er;

8Tf there exist statistical correlations between measurements, they should be taken
into consideration. This will be discussed in detail in the following chapters.

11.5. PROBLEMS 521

The contents of this file is an example of a script interpreted by the awk
program. The operating system knows which program to use for the
interpretation by reading the first line #!/bin/awk -f where the first two
characters of the file should be exactly #!. For the commands to be
interpreted and executed, one has to make the script executable using
the command chmod a+x average. Then the command

> ./average dataR

executes the script using the awk interpreter. We remind to the reader
that the commands between curly brackets { ... } are executed by
awk for every line of the file dataR. The commands between END{ ... }
are executed after the last line of the file has been read[]. Therefore the
lines

av += $1; # the sum of data
er += $1*$1; # the sum of squares of data

add the first column of the file dataR and its square to the variables av
and er respectively. The commands

av /= NR; # NR = ”Number of Records” = number of lines
er /= NR;

are executed after the whole file dataR has been read and divide the
variables av and er with the predefined variable NR which counts the
total number of lines read so far. The last lines of the script compute
the error according to equation (11.36) and print the final result. The
shell script in the file rwl-anal.csh codes all of the above commands in
a script. Read the comments in the file for usage instructions.

11.5 Problems

1. Reproduce the results shown in figure and confirm the validity

of equation ([11.5).

"You can also execute a set of commands before the file is read by putting them
between BEGIN{ ... }

522

CHAPTER 11. THE RANDOM WALKER

. Generate a sequence of pseudorandom numbers which follow a

Gaussian distribution with standard deviation o = 1/ V2. Construct
the plot of relative frequencies together with the plot of the proba-
bility density function.

. Generate a sequence of pseudorandom numbers which follow the

Cauchy distribution with ¢ = 1. Construct the plot of relative fre-
quencies together with the plot of the probability density function.

. Write a program that calculates the period of the function drandom().

Check whether the numbers 0 and 1 belong to the sequence.

. Compute the CPU time cost of the random number generation

as follows: If you have an executable file, e.g. random, run the
/usr/bin/time command with ./random as its argument:

> /usr/bin/time ./random

Upon exit of the command, the program /usr/bin/time prints the
total CPU time in seconds to the stderr. Compute the time needed
to generate 10 random numbers using the function drandom(), as
well as the C++ Standard Library engine ranlux24 and ranlux48.
Repeat for the MIXMAX engine.

Show that if the expectation values of the vectors (£;) = @7 then
<§> = UTN and we obtain a linear relation between displacement—
length of path. The quantity v is the expectation value of the speed
of the particle. Compute (R?) for large values of N.

Confirm the relations computed in the previous problem numeri-
cally. In your program, set the first line in ({11.24) equal to 1/2
and the rest equal to 1/6. Compute the expectation values ((¢;),)
and ((&;),) and use them to calculate the average speed of the par-
ticle. Check the validity of the relations (R?) ~ N® and (R,) ~ N?%=
(R,) ~ N?*. What is the relation between a, a, and a,?

. Make the appropriate changes in the file rw. cpp so that the user can

enter the values Nwalk and Nstep interactively using the command
line arguments. For example, if she wants to generate 100 random

11.5. PROBLEMS 523

10.

11.
12.

13.

14.

15.

16.

walks with N = 2000, she should run the command ./rw 100 2000.
(Hint: Look in the file rw1.cpp)

. We know that for the RW we have that (R) = 0. Calculate (z) and

(y) numerically for N = 100, 100000. Are they really equal to zero?
Why? How does this depend on the number of measurements?

Compute the expectation value of the number of returns of the RW
to his initial position as a function of N. What happens as N — co?
Why?

Reproduce figure for the RW.

Write a program that implements the NRRW and reproduce the
results in figure for the NRRW.

In the program rw.cpp the RW’s position is determined by two
double variables x,y. The next position is calculated by the state-
ments x+=1.0, y+=1.0. What are the limitations on the size of
random walks that can be studied with this choice? What happens
if one uses float variables x,y instead? Take into account the fact
that (R?) = N.

Repeat the previous problem by using long variables x,y. The next
position is calculated by the statements x++, y++. Discuss the pros
and the cons of each choice.

Repeat the previous problems by using int variables x,y. Discuss
the pros and the cons of each choice by considering also the running
time of the program. Use the command /usr/bin/time.

Write a straightforward code that implements the SAW. How big
N can you simulate? Check whether the CPU time for computing
a given number of random walks increases exponentially with V.

Search the internet for the most efficient algorithm that simulates
the SAW for large N.

524 CHAPTER 11. THE RANDOM WALKER

Chapter 12

Monte Carlo Simulations

In this chapter we review the basic principles of Monte Carlo simula-
tions in statistical mechanics. In the introduction, we review some of the
fundamental concepts of statistical physics. The reader should have a ba-
sic understanding of concepts like the canonical ensemble, the partition
function, the entropy, the density of states and the quantitative descrip-
tion of fluctuations of thermodynamic quantities. For a more in depth
discussion of these concepts, see [4,45,54,55,56,57].

For most of the interesting systems, the partition function cannot be
calculated analytically, and in such a case we may resort to a numerical
computation. This is what is done most effectively using Monte Carlo
simulations, which consist of collecting a statistical sample of states of
the system with an appropriately chosen probability distribution. It is
remarkable that, by collecting a sample which is a tiny fraction of the
total number of states, we can perform an accurate calculation of its
thermodynamic quantities]. But this is no surprise: it happens in our
labs all the timef]!

'For example, for the d = 2, L = 100 Ising model, we have 2100%100 = 910000 , 13010
states. A typical sample yielding a very accurate measurement consists of ~ 107 states,
i.e. a fraction of ~ 107309 This fraction becomes many orders of magnitude smaller
for realistic complex systems studied in today’s supercomputers.

"For a gas formed by 10?2 molecules which has volume equal to 1 1t in room tem-
perature and atmospheric pressure, the average velocity of its molecules is ~ 100ms~1.
This means that the typical de Broglie wavelength of the molecules is A &~ 10~ %m. If we
estimate that the volume occupied by each molecule is of order A3, then the number of
states that each molecule can be is ~ 1027, Therefore the system can be in & (1027)10%
different states. If we assume that on the average the molecules collide 10° times per

525

526 CHAPTER 12. MONTE CARLO SIMULATIONS

12.1 Statistical Physics

Statistical physics describes systems with a very large number of degrees
of freedom N. For simple macroscopic systems N =~ 10%* — 10**. For such
systems, it is practically impossible to solve the microscopic equations that
govern their dynamics. Even if we could, the solution would have had
much more information than we need (and capable of analyzing!). It
is enough, however, to know a small number of bulk properties of the
system in order to have a useful description of it. E.g. it is enough to
know the internal energy and magnetization of a magnet or the energy
and density of a fluid instead of the detailed knowledge of the position,
momentum, energy and angular momentum of each particle they are
made of. These quantities provide a thermodynamic description of a
system. Statistical physics makes an attempt to derive these quantities
from the microscopic degrees of freedom and their dynamics given by
the Hamiltonian of the system.

Consider a system which can be in a set of discrete states which belong
to a countable set {¢}. The energy spectrum of those states is assumed
to consist of discrete values|| £y < £} < ... < E, < This system is in
contact and interacts with a large heat reservoir which has temperature
B = 1/kT. The contact with the reservoir results in random transitions
which change the energy of the systemf. The system is described by the
weights w,(t) which give the probability to find the system in a state
1 at time ¢t. These weights are the connection between the microscopic
and statistical description of the system. When this system is in thermal
equilibrium with the reservoir, its statistical properties are described by
the, so called, canonical ensemble.

Let R(u — v) be the transition rates from the state 1 — v, i.e.

R(pu — v)dt = Transition probability ;1 — v in time dt, (12.1)

which depend on the interaction between the system and the thermal

second, then we have ~ 103! changes of states per second. In order that the system
visits all possible states, the time needed is 101°*° times the age of the universe [4].
*Fy is the ground state energy of the system.
‘An isolated system always has constant energy. Such a system is studied in the
microcanonical ensemble.

12.1. STATISTICAL PHYSICS 527

reservoir. The master equation for the weights w,(t) is

ddet(t) = Z{wy(t)R(V =) —wu(t)R(p — v)}
St = 1. (12.2)

The first of the above equations tells us that the change in w,(¢) is equal
to the rate that the system comes into the state ;1 from any other state
v, minus the rate of leaving the state u. The second equation is a result
of the probability interpretation of the weights w,(t) and states that the
probability of finding the system in any state is equal to 1 at all times.
The transition rates R(u — v) are assumed to be time independent
and then the above system of equations for w,(t) is linear with real pa-
rameters. This, together with the constraint 0 < w,,(t) < 1, implies thatf,
in the large time limit, dwd#t(t) = 0 and the system reaches equilibrium.
Then, the w,(t) converge to finite numbers p, > 0. These are the equi-
librium occupation probabilities
pp = lim w,(t), Zpu =1. (12.3)
W

t—o00

For a system in thermodynamic equilibrium with a reservoir in tem-
perature 7', with § = 1/kT, the probabilities p, follow the Boltzmann
distribution (Gibbs 1902)

1
pu= e, (12.4)

and define the, so called, canonical ensemble. The parameter 3 will be fre-
quently referred to as simply “the temperature” of the system, although,
strictly speaking, it is the inverse of it. Its appearance in the exponential
in equation (12.4)), defines a characteristic energy scale of the system.
The Boltzmann constant k£ ~ 1.38 x 10"*JK ! is simply a conversion
constant between units of energyﬁ.

*Note that equation (12.2) can be written in the form dwéi"t(t) =Y, Ruw,(t), where
the matrix R, has real, constant elements.

°It is not a fundamental constant of nature like ¢, i, G, Temperature is an energy
scale and the fact that it is customary to measure it in degrees Kelvin or other, is a
historical accident due to the ignorance of the microscopic origin of heat exchange at
the times of the original formulation of thermodynamics.

528 CHAPTER 12. MONTE CARLO SIMULATIONS

The normalization Z in equation (12.4) is the so called partition func-
tion of the system. The condition } p, =1 implies

Z(B) =) e P (12.5)

The measurement of a physical quantity, or observable, of a thermo-
dynamic system has a stochastic character. For systems with very large
number of degrees of freedom NN, one is interested only in the average
value of such a quantity. This is because the probability of measuring
the quantity to take a value significantly different from its average is
ridiculously small. The average, or expectation value, (O) of a physical
observable O whose value in a state ;. is O, is equal to

(0) =) pu0u= %Z O,e . (12.6)
7

As we will see later, the standard deviation AQO for a typical thermody-
namic system is such that
AO 1
—~ —, (12.7)
O VN

which is quite small for macroscopic systems{. In such cases, the fluctu-
ations of the values of O from its expectation value (O) can be neglected.
The limit N — oo is the so called thermodynamic limit, and it is in this limit
in which we are studying systems in statistical mechanics. Most systems
in the lab are practically in this limit, but in the systems simulated on a
computer we may be far from it. The state of the art is to invent methods
which can be used to extrapolate the results from the study of the finite
system to the thermodynamic limit efficiently.

Because of (12.5). the partition function encodes all the statistical
information about the system. It is not just a simple function of one
or more variables, but it counts all the states of the system with the
correct weight. Its knowledge is equivalent to being able to compute any

"'E.g. for N ~ 10* we have that AO/O ~ 107" and the measurements of O
fluctuate at the 11th significant digit of their value. This is usually much smaller than
other experimental errors.

12.2. ENTROPY 529

thermodynamic quantity like, for example, the expectation value of the
energy (E) of the systemf}:

1 1 0
— g _'BEH — - _6 — H
v = Z%:E“e Z%:aﬁe zagZe
107 0lnZzZ
- 2 _ 12.
795 95 (12.8)
Similarly, one can calculate the specific heat from
ou 9poU o, 0’InZ ,0%In Z
—-_— = = (- — =k 12.9
¢ or 0T op (=B 052) = kb 03? (12.9)
12.2 Entropy
The entropy S of a thermodynamic system is defined by
OF
———— F=U-=-T 121
S=—57 U-TS, (12.10)

where F' is the free energy if the system. We will attempt to provide
microscopic definitions that are consistent with the above equations.
We define the free energy from the relation

M =z=> e, (12.11)
w

or equivalently

F = —llnz. (12.12)

p

Note that for ' — 0 the free energy becomes the ground state energyfl
Indeed, as 3 — oo only the lowest energy term in equation ({12.11) sur-
vives. For this reason, equation () gives limr_,0.S = 0, which is the
third law of thermodynamics.

*In thermodynamics, (F) corresponds to the internal energy U of the system.
°For strict equality it is necessary that the ground state is not degenerate as it happens
in the case of spontaneous symmetry breaking.

530 CHAPTER 12. MONTE CARLO SIMULATIONS

The definition (12.11)) is consistent with (12.10) since

OlnZ 0 oF oF
5 __%(_5F)_F+ﬁ%_F_Ta_T_F+TS' (12.13)

The relation of the entropy S to the microscopic degrees of freedom

U=—

can be derived from equations (12.11) and (12.10):
S U-F 1
= =BU-F) = 5(;@@ +3 InZ). (12.14)
But
e Pbu 1
Pu=— :>E#:—B(lnpu+an), (12.15)
therefore
S 1 1
- =7 <—— Inp,+InZ)p —i——an>
L Xu: B(I) I 6
= —Zpulnpu —anZpM +InZ
u p
= =) pulnp,. (12.16)
m
Finally
S=-kY p,Inp,. (12.17)
m

Let’s analyze the above relation in some special cases. Consider a
system[] where all possible states have the same energy. For such a
system, using equation ({12.17), we obtain that

1
py=—=const. = S =klng. (12.18)

9
Therefore, the entropy simply counts the number of states of the system.
This is also the case in the microcanonical ensemble. Indeed, equation

(12.18) is also valid for the distribution

L =F
p, =< 9B K , (12.19)
" { 0 E,#FE

“E.g. the random walker, two dimensional quantum gravity without matter.

12.2. ENTROPY 531

which can be considered to be equivalent to the microcanonical ensemble
since it enforces F, = I = const. Equation (12.19) can viewed as an
approximation to a distribution sharply peaked at £. In such a case, S
counts, more or less, the number of states of the system with energy close
to L.

In general, the functionf] g(E) is defined to be equal to the number
of states with energy equal to E. Then the probability p(E) to measure
energy I in the canonical ensemble is

p(E) = (0p,E,) ZPM(SE B, = Zef’g "0 B, = —efﬁ 2513 B, -

(12.20)
Since), 0p,g, = g(£), we obtain
E)e PE
p(E) = (0p.p,) = —g(e . (12.21)
For a generic system we have that
9(E) ~ B, (12.22)

where N is the number of degrees of freedom of the system and « is a
constant. The qualitative behavior of the distribution (12.21) is shown in
figure [12.1. For such a system the most probable values of the energy are
sharply peaked around a value E* and the deviation AFE is a measure of
the energy fluctuations. The ratio AE/E drops with N as 1/v/N. Indeed,
the functionf]

P(E) = E*Ne PF — g=FE-aNInE (12.23)

has a maximum when

Jlnp(FE) 0 aN
5| . =0= 5=(-fE +aN I E) = =0
(12.24)
or
B = %N. (12.25)

""The notation Q(E) is also frequently used and it is referred to as the density of states.
5(E) is proportional to p(FE) for fixed 3. It is only defined for convenience.

532 CHAPTER 12. MONTE CARLO SIMULATIONS

Figure 12.1: The probability p(E) as a result of the competition of the Boltzmann
factor e #¥ and the density of states g(E) ~ E“N. E* is the most probable value of the
energy and AE is a measure of the energy fluctuations.

As the temperature increases (8 decreases), E* shifts to larger values. E*
is proportional to the system size. By Taylor expanding around E* we
obtain

Inp(E
nj(E) = np(E*)+ (£ — &) 202E)
OE |p_p-
1 O*Inp(E)
+-(E - E*)? —=—— +...
2 OE? | g
1 N
= Inp(E*) + §(E — E*)? (_((;—*)2) +..., ((12.26)
where we used equation (12.24) and computed % g Therefore
70¢N7<EHE*>2
p(E) = p(E*)e ICLI (12.27)

which is a Gaussian distribution with standard deviation

[[(4F)?* VN

12.3. FLUCTUATIONS 533

Therefore we confirm the relation (12.7)

AE
BTN TN
In the analysis above we assumed analyticity (Taylor expansion, equation
(12.26)), which is not valid at a critical point of a phase transition in the
thermodynamic limit.

Another important case where the above analysis becomes slightly
more complicated is when the distribution p(E) has more than one
equally probable maximaf separated by a large probability barrier as
shown in figure like when the system undergoes a first order phase
transition. Such a transition occurs when ice turns into water or when
a ferromagnet looses its permanent magnetization due to temperature
increase past its Curie point. In such a case the two states, ice — water
/ ferromagnet — paramagnet, are equally probable and coexist. This is

qualitatively depicted in figure [12.9.

(12.29)

12.3 Fluctuations

The stochastic behavior of every observable O is given by a distribution
function p(O) which can be derived from the Boltzmann distribution
(12.4). Such a distribution is completely determined by its expectation
value (O) and all its higher order moments, i.e. the expectation values

(O—=(0))"), n=1,2,3..... The most commonly studied moment is the
second moment (n = 2)
(AO)? = (0 —{0))?) = (0*) — (0)?. (12.30)

For a distribution with a single maximum, AQ is a measure of the fluc-
tuations of O away from its expectation value (O). When O = E we
obtain

(AE)* = ((E — (E))?) = (E*) — (E)*, (12.31)
and using the relations
o _ LN poom L0 N~ g, 102
(E>—Z;Eue _2852;e =Zo7 (12.32)

*When there are many local maxima, the absolute maximum dominates in the ther-
modynamic limit N — oo.

534 CHAPTER 12. MONTE CARLO SIMULATIONS

P(E)

pmax

AE

Pmin

Figure 12.2: Two peak structure in the distribution p(E) of the energy E for a
system undergoing a first order phase transition. The two maxima correspond to two
coexisting states (“ice”"water”) and AFE/N is the latent heat. In the thermodynamic
limit N — 00, R = Ppin/Pmax decreases like R ~ e~f4, where A is the minimal surface
separating the two phases and f is the interface tension.

and
1 10 107
—— -BE, _ _ -~ —BE, _ _ 7~
<E>—Z;E#e Zaﬁ;e 705" (12.33)
we obtain that
sy gy 182 _(_102\"_&hnz
which, according to (12.9), is the specific heat
_OE) o2
=<7 = kB(AE). (12.35)

This way we relate the specific heat of a system (a thermodynamic quan-
tity) with the microscopic fluctuations of the energy.

This is true for every physical quantity which is linearly coupled to an
external field (in the case of F, this role is played by /). For a magnetic

12.3. FLUCTUATIONS 535

system in a constant magnetic field B, such a quantity is the magnetization
M. 1If M, is the magnetization of the system in the sate ; and we assume
that its direction is parallel to the direction of the magnetic field B, then
the Hamiltonian of the system is

H=FE—-BM, (12.36)

and the partition function is

Z =Y e PPutiBMy (12.37)
H
“Linear coupling” signifies the presence of the linear term BM in the
Hamiltonian. The quantities B and M are called conjugate to each other.
Other well known conjugate quantities are the pressure/volume (P/V) in
a gas or the chemical potential/number of particles (¢/N) in the grand
canonical ensemble.
Because of this linear coupling we obtain

(M) = ZM e PEutBBM, — ;Zgg —g—g, (12.38)

which is analogous to (12.8). The equation corresponding to (12.34) is
obtained from (12.30) for © = M

(AM)? = (M — (M))?) = (M?) — (M)*. (12.39)
From ([12.37) we obtain
(M) = Z Me —BE,+BBM, 5212 222 7 (12.40)

therefore

2
(AM)? = 1{182—2—%(8—2)} LPInZ _1O0M) (15 41)

B2 | Z 0B? OB 52 B2 *ﬁ 9B
The magnetic susceptibility x is defined by the equation
_ 1o _ B 2
=~ og — N\M=QD)7, (12.42)

where we see its relation to the fluctuations of the magnetization. This
analysis can be repeated in a similar way for every pair of conjugate
quantities.

536 CHAPTER 12. MONTE CARLO SIMULATIONS

12.4 Correlation Functions

The correlation functions can be obtained is a similar manner when we
consider external fields which are space dependent. For simplicity, con-
sider a system defined on a discrete lattice, whose sites are mapped to
natural numbers i = 1,..., N. Then the magnetic field B, is a function
of the position 7 and interacts with the spin s; so that

H=F— ZBZ»SZ» . (12.43)

Then the magnetization per site m; = s;f] at position 7 is

10InZz
i) =555 (12.44)
The connected two point correlation function is defined by
. 1 9*InZ
GE(i,3) = (5= (s:)) (55— () = (si5;) — {s)(s;) = 5 0B.0B; (12.45)

When the values of s; and s; are strongly correlated, i.e. they “vary
together” in the random samples that we take, the function (12.45) takes
on large positive values. When the values of s; and s; are not at all
correlated with each other, the terms (s; — (s;))(s; — (s;)) in the sum over
p in the expectation value ((s; — (s;))(s; — (s;))) cancel each other and
G¥? (i,7) is zerof].

The function G (i,) takes its maximum value ((s; — (s;))?) for i = j.
Then it falls off quite fast. For a generic system

G((:Z) (i,7) ~ e %iil/€ 7 (12.46)

where |z;;| is the distance between the points ¢ and j. The correlation length
&, is a characteristic length scale of the system which is a measure of the
distance where there is a measurable correlation between the magnetic

“Actually the two quantities are proportional to each other, but for simplicity we set
the proportionality constant equal to 1.
“There is also the possibility (not occurring in our discussion) that s; and s; are

strongly anti-correlated in which case Gg)(z’, Jj) is negative.

12.4. CORRELATION FUNCTIONS 537

L
e i
I

G 2(ij)

Il

Figure 12.3: The connected two point correlation function GEQ)(Z', j) for £ < co and
& — 0.

moments of two lattice sites. It depends on the parameters that define
the system & = £(f3, B, N, ...). It is important to stress that it is a length
scale that arises dynamically. In contrast, length scales like the size of the
system L or the lattice constant a are parameters of the system which
don’t depend on the dynamics. In most of the cases, ¢ is of the order of
a few lattice constants ¢ and such a system does not exhibit correlations
at macroscopic scales (i.e. of the order of L).

Interesting physics arises when ¢ — oo. This can happen by fine
tuning the parameters on which § depends on to their critical values.
For example, in the neighborhood of a continuous|] phase transition, the
exponential falloff in (12.46) vanishes and G (i, §) falls off like a power
(see figure [12.3)

1

GP (i, j) ~ (12.47)

where d is the number of dimensions of space and 7 a critical exponent. As
we approach the critical pointﬂ correlations extend to distances |z;;| >

**Ie. not of first order.
"If we tune many parameters, this is a critical surface in the parameter space.

538 CHAPTER 12. MONTE CARLO SIMULATIONS

a. Then the system is not sensitive to the short distance details of the
lattice and its dynamics are very well approximated by continuum space
dynamics. Then we say that we obtain the continuum limit of a theory
which is microscopically defined on a lattice. Since the microscopic details
become irrelevant, a whole class of theories with different microscopic
definitions[] have the same continuum limit. This phenomenon is called
universality and plays a central role in statistical physics and quantum
field theories.

12.5 Sampling

Our main goal is to calculate the expectation value (O),

O, e PEu
(0)=> p,0, = % (12.48)
m M

of a physical quantity, or observable, O of a statistical system in the canon-
ical ensemble approximately. For this reason we construct a sample of
M states {1, p2, ..., uy} which are distributed according to a chosen
probability distribution P,,. We define the estimator Oy, of (O) to be

_ Zz]\il Ompu_,-le_ﬁE”i
> Pyl

The above equation is easily understood since, for a large enough sample,

P,, = “Frequency of finding p; in the sample”, and we expect that

(0) = %im Own . (12.50)

M—o0

Oum (12.49)

Our goal is to find an appropriate P, so that the convergence of (12.50)
is as fast as possible. Consider the following cases:

12.5.1 Simple Sampling

We choose P, = const., and equation (12.49) becomes
M —BE,,

_ Zizl Ouz‘e PP

o M _BE,.
Doy b

"E.g. defined on square or triangular lattices, with nearest neighbor or next to nearest
neighbor interactions.

Oum (12.51)

12.5. SAMPLING 539

The problem with this choice is the small overlap of the sample with the
states that make the most important contributions to the sum in (12.48).
As we have already mentioned in the introduction, the size of the sample
in a Monte Carlo simulation is a minuscule fraction of the total number of
states. Therefore, the probability of picking the ones that make important
contributions to the sum in (12.48) is very small. Consider for example
the case O = F in a generic model. According to equation (12.21) we
have that

(E) =) Ep(E), (12.52)

where p(E) is the probability of measurini energy £ in the system. A

qualitative plot of p(E) is shown in figure [[2.1. From (12.25) and ({12.28)
we have that E* ~ 1/ and AE ~ 1/4, therefore for =0 and 5 > 0 the

qualitative behavior of the respective p(E) distributions is shown in figure
. The distribution of the simple sampling corresponds to the case 3 =

p(E)

E

Figure 12.4: The distributions p(E) for a generic model for temperatures 8 = 0
and 8 > 0. The two distributions have negligible overlap. In order that the 8 = 0
distribution is as shown, we assume that the energy of all states is bounded and that
the system has a finite number of degrees of freedom.

0 in equation (12.4), since p, =const. in this case[]. In order to calculate

“For these statements to be well defined, we assume that the energy of all states is
bounded and that the system has a finite number of degrees of freedom. Otherwise

540 CHAPTER 12. MONTE CARLO SIMULATIONS

the sum (12.52) with acceptable accuracy for 3 > 0 we have to obtain
a good sample in the region where the product Ep, (E) is relatively
important. The probability of obtaining a state such that Ep, (F) is
non negligible is very small when we use the p,_ (E) distribution. This
can be seen pictorially in figure .

Even though this method has this serious shortcoming, it could still
be useful in some cases. We have already applied it in the study of
random walks. Note that, by applying equation (12.51), we can use the
same sample for calculating expectation values for all values of .

12.5.2 Importance Sampling

From the previous discussion it has become clear that, for a large system,
a very small fraction of the space of states makes a significant contribution
to the calculation of (O). If we choose a sample with probability

e PEu
A

then we expect to sample exactly within this region. Indeed, the estimator,
given by equation (12.49), is calculated from

— Zi‘il Oy, (efﬁEﬂi)fl e BEL; 1 M
Y (e fPn) e BB M;%- (12.54)

=1

PH = p# =) (12-53)

Oum

Sampling this way is called importance sampling, and it is the method
of choice in most Monte Carlo simulations. The sample depends on
the temperature 3 and the calculation of the expectation values (12.54)
requires a new sample for eachf] 3. This extra effort, however, is much
smaller than the one required in order to overcome the overlap problem
discussed in the previous subsection.

12.6 Markov Processes

Sampling according to a desired probability distribution P, is not possible
in a direct way. For example, if we attempt to construct a sample accord-

consider the overlap for two temperatures 3; > [3.
“We can use the same sample for a range of temperatures by using the histogram
method, see [4].

12.6. MARKOV PROCESSES 541

e

ing to P, = ZE” by picking a state ;1 by chance and add it to the sample
with probability P,, then we have a very small probability to accept that
state in the sample. Therefore, the difficulty of constructing the sample
runs into the same overlap problem as in the case of simple sampling.
For this reason we construct a Markov chain instead. The members of
the sequence of the chain will be our sample. A Markov process, or a
Markov chain, is a stochastic process which, given the system in a state
i, puts the system in a new state v in such a way that it has the Markov
property, i.e. that it is memoryless. This means that a chain of states

M1 — o — ... — Upnr, (12.55)

is constructed in such a way that the transition probabilities P(y1 — v) from
the state ;1 to a new state v satisfy the following requirements:

1. They are independent of “time”

2. They depend only on the states ;» and v and not on the path that the
system has followed on order to get to the sate ;1 (memorylessness)

3. The relation
Y Pu—v)=1 (12.56)

holds. Beware, in most of the cases P(u —) > 0, i.e. the system
has a nonzero probability to remain in the same state

4. For M — oo the sample {y;} follows the P, distribution.

Then our sample will be {x;} = {1, 2, ..., pa}. We may imagine that
this construction happens in “time” 7 = 1,2,..., M. In a Monte Carlo
simulation we construct a sample from a Markov chain by appropriately
choosing the transition probabilities P(u — v) so that the convergence 4.
is fast.

Choosing the initial state y; can become a non trivial task. If it turns
out not to be a typical state of the sample, then it could take a long
“time” for the system to “equilibrate”, i.e. for the Markov process to start
sampling states typical of the simulated temperature. The required time
for this to happen is called the thermalization time which can become a
serious part of our computational effort if we make a wrong choice of j;
and/or P(u — v).

542 CHAPTER 12. MONTE CARLO SIMULATIONS

A necessary condition for the sample to converge to the desired dis-
tribution is for the process to be ergodic. This means that for every state
(o it is possible to reach any other state v in a finite number of steps. If
this criterion is not satisfied and a significant part of phase space is not
sampled, then sampling will fail. Usually, given a state p, the reachable
states v at the next step (i.e. the states for which P(u — v) > 0) are
very few. Therefore the ergodicity of the algorithm considered must be
checked carefullyf].

12.7 Detailed Balance Condition

Equation (12.2) tells us that, in order to find the system in equilibrium
in the p, distribution, the transition probabilities should be such that

S puP—v) =3 pPv = pi). (12.57)
v Iz

This means that the rate that the system comes into the state p is equal
to the rate in which it leaves i From equation (12.56) we obtain

pu=> P —p). (12.58)
“w

This condition is necessary but it is not sufficient (see section 2.2.3 in [4]).
A sufficient, but not necessary, condition is the detailed balance condition.
When the transition probabilities satisty

puP(pp —v) =p,Plv —p), (12.59)

then the system will equilibrate to p, after sufficiently long thermalization
time. By summing both sides of (12.59), we obtain the equilibrium con-
dition (12.57). For the canonical ensemble ([12.4) the condition becomes

"There exist algorithms which are non-ergodic but the non reachable states are of
“measure zero” in the space of states. These algorithms are formally non ergodic, but
they are ergodic from a practical point of view. On the contrary, there exist algorithms
that are formally ergodic but there are large regions of phase space where the probability
of getting there is very small. This puts “ergodic barriers” in the sampling which will
lead to wrong results. A common example is sampling a system in the neighborhood
of a first order phase transition where, for large systems, it is very hard to sample states
in both phases.

12.7. DETAILED BALANCE CONDITION 543

Plu—v) v _ pmn (12.60)

Pv—p) pu
One can show that if the transition probabilities satisfy the above condi-
tions then the equilibrium distribution of the system will be the Boltz-
mann distribution (12.4). A program implementing a Monte Carlo sim-
ulation of a statistical system in the canonical ensemble consists of the
following main steps:

1. Write a program that codes appropriately chosen transition proba-
bilities P(1x — v) that satisfy condition (12.60)

2. Choose an initial state p,

3. Let the system evolve until it thermalizes to the Boltzmann distri-
bution (12.4) (thermalization)

4. Collect data for the observables © and calculate the estimators O,

from equation (12.54)

5. Stop when the desired accuracy in the calculation of (O) has been
achieved.

Equation (12.60)) has many solutions. For a given problem, we are
looking for the most efficient one. Below we list some possible choices:

Plp—v)=A- e 28FE~F) (12.61)
efﬁ(EufE,u)
Plu—v) = A T—mpy (12.62)
e AEAE) B, F, >0
p,HV:A.{ v Bu>0 (12.63)
() 1 E,—E, <0

for appropriately chosen states v # ;1 and

Plp—p)=1- ZP(M — V). (12.64)

044 CHAPTER 12. MONTE CARLO SIMULATIONS

P(u — ') = 0 for any other state v/. In order for ({12.64) to be mean-
ingful, the constant A has to be chosen so that

Y Plu—v)<1. (12.65)
vEpR

Equation (12.65) gives much freedom in the choice of transition prob-
abilities. In most cases, we split P(; — v) in two independent parts

Plu—v)=g(p—v)Alu—v). (12.66)

The probability g(i — v) is the selection probability of the state v when
the system is in the state ;1. Therefore the first step in the algorithm is
to select a state v # p with probability g(u — v).

The second step is to accept the change with probability A(yx — v).
If the answer is no, then the system remains in the state . This way
equation (12.64) is satisfied. The probabilities A(y — v) are called the
acceptance ratios.

The art in the field is to device algorithms that give the maximum
possible acceptance ratios for the new states v and that the states v are as
much as possible statistically independent from the original state . An
ideal situation is to have A(y — v) =1 for all v for which ¢g(u — v) > 0.
As we will see in a following chapter, this is what happens in the case of
the Wolff cluster algorithm.

12.8 Problems

1. Prove equation (12.18).
2. Prove equation (12.19).
3. Prove equation (12.45).
4. Show that equations (12.61)—([12.63) satisty (12.60)).

Chapter 13

Simulation of the d =2 Ising
Model

This chapter is an introduction to the basic Monte Carlo methods used
in the simulations of the Ising model on a two dimensional rectangular
lattice, but also in a wide spectrum of scientific applications. We will in-
troduce the Metropolis algorithm, which is the most common algorithm
used in Monte Carlo simulations. We will discuss the thermalization of
the system and the effect of correlations between successive spin configu-
rations generated during the simulation. The autocorrelation function and
the time scale defined by it, the autocorrelation time, are measures of these
autocorrelations and play a central role in the study of the statistical in-
dependence of our measurements. Beating autocorrelations is crucial in
Monte Carlo simulations since they are the main obstacle for studying
large systems, which in turn is essential for taking the thermodynamic
limit without the systematic errors introduced by finite size effects. We
will also introduce methods for the computation of statistical errors that
take into account autocorrelations. The determination of statistical errors
is of central importance in order to assess the quality of a measurement
and predict the amount of resources needed for reaching a specific accu-
racy goal.

545

546 CHAPTER 13. D =2 ISING MODEL

13.1 The Ising Model

The Ising model (1925) [58] has played an important role in the evo-
lution of ideas in statistical physics and quantum field theory. In par-
ticular, the two dimensional model is complicated enough in order to
possess nontrivial properties but simple enough in order to be able to
obtain an exact analytic solution. The zero magnetic field model has a
2nd order phase transition for a finite value of the temperature and we
are able to compute critical exponents and study its continuum limit in
detail. This gives us valuable information on the non analytic properties
of a system undergoing a second order phase transition, the appearance
of scaling, the renormalization group and universality. Using the exact
solution of Onsager (1948) [69] and others, we obtain exact results and
compare them with those obtained via approximate methods, like Monte
Carlo simulations, high and low temperature expansions, mean field the-
ory etc. The result is also interesting from a physics point of view, since it
is the simplest, phenomenologically interesting, model of a ferromagnetic
material. Due to universality, the model describes also the liquid/vapor
phase transition at the triple point. A well known textbook for a dis-
cussion of statistical mechanical models that can be solved exactly is the
book by Baxter [57].

In order to define the model, consider a two dimensional square lattice
like the one shown in figure [I3.1. On each site or node of the lattice we
have an “atom” or a “magnet” of spin s;. The geometry is determined
by the distance of the nearest neighbors, the lattice constant a, and the
number of sites V. Each side consists of L sites so that N = L x L = L¢,
where d = 2 is the dimension of space. The topology is determined by
the way sites are connected with each other via links. Special care is given
to the sites located on the sides of the lattice. We usually take periodic
boundary conditions which is equivalent to identifying the opposite sides
of the square by connecting their sites with a link. This is depicted in
figure (13.1). Periodic boundary conditions endow the plane on which
the lattice is defined with a toroidal topology. = The system’s dynamics
are determined by the spin—spin interaction. We take it to be short range
and the simplest case considered here takes into account only nearest

'For a very nice proof of Onsager’s solution look at the book by T. Huang [60] and
the paper by C.N. Yang [61].

13.1. THE ISING MODEL 047

AN

ARRRRER:

;
Iy
:«‘
\
)

*
:\

RS
&

Pttty

DR
\‘

N

SRR
RN

ecen,

/

Figure 13.1: The two dimensional square lattice whose sites i = 1,..., N are occupied
by “atoms” or “magnets” with spin s;. In this figure spins may have any orientation on
the plane (XY model). The simplest models take into account only the nearest neighbor
interactions —J5; - §;, where (ij) is a link of the lattice. We take periodic boundary
conditions which result in a toroidal topology on the lattice where the horizontal and
vertical sides of the lattice are identified. In the figure, identified sides have the same
color and their respective sites are connected by a link..

neighbor interactions. In the Ising model, spins have two possible values,
“up” or “down” which we mapf| to the numerical values +1 or —1. For
the ferromagnetic model, each link is a “bond” whose energy is higher
when the spins on each side of the link are pointing in the same direction
and lower when they point in the opposite]] direction. This is depicted in
figure [13.1. The system could also be immersed in a constant magnetic
field B whose direction is parallel to the direction of the spins.

*This is only a convention. We could have picked 0 and 1 or any other pair of
labels. The choice of labels affects only the expression of the Hamiltonian and related
observables.

*The opposite is true for the antiferromagnetic model.

548 CHAPTER 13. D =2 ISING MODEL

S; Sj S; S]

Figure 13.2: The Ising model spins take two possible values: “up” or “down” and
the Hamiltonian of the system is the sum of contributions of the energy of all links
(“bonds”) (ij). The energy of each bond takes two values, +.J for opposite or —J for
same spins, where J > 0 for a ferromagnetic system. The system possesses a discrete
Zy symmetry: The Hamiltonian is invariant when all s; — —s;.

We are now ready to write the Hamiltonian and the partition function
of the system. Consider a square lattice of N lattice sites (or vertices)
labeled by a number i = 1,2,..., N. The lattice has N; links (or bonds)
among nearest neighbors. These are labeled by (ij), where (i, j) is the
pair of vertices on each side of the link. We identify the sides of the
square like in figure [13.1. Then, since two vertices are connected by one
link and four links intersect at one vertex, we have thatf

2N, =4N = N, = 2N . (13.1)

At each vertex we place a spin s; = £1. The Hamiltonian of the system
is given by
H: _stisj —BZSZ (132)
(i) i

The first term is the spin—spin interaction and for J > 0 the system is
ferromagnetic. In this book, we consider only the J > 0 case. A link
connecting same spins has energy —.J, whereas a link connecting opposite
spins has energy +J. The difference of the energy between the two states
is 2J and the spin-spin dynamics favor links connecting same spins. The

‘It is easy to see that each vertex is in a one to one correspondence with a pair of
links, say the east and north bound ones.

13.1. THE ISING MODEL 549

minimum energy FEj is obtained for the ground state, which is the uniquef]
state in which all spins point in the directionf] of B. This is equal to

Ey=—JN,— BN = —(2J + B)N . (13.3)

The partition function is

7 — Z Z Z efBH [{si}] — Ze,BJE (i) Si isj+BB Y, s ’ (134)

s1=x1 sg==1 sy==%1

where {s;} = {s1,52,...,sn} is a spin configuration of the system. The
number of terms is equal to the number of configurations {s;}, which is
equal to 2V, i.e. it increases exponentially with N. For a humble 5 x 5
lattice we have 2% ~ 3.4 x 10° terms.

The two dimensional Ising model for B = 0 has the interesting prop-
erty that, for 5 = ., where

1
fe=5In(1+ V2) ~ 0.4406867935 . .. | (13.5)

it undergoes a phase transition between an ordered or low temperature
phase where the system is magnetized ((|M|) > 0) and a disordered or
high temperature phase where the magnetization vanishes ({|M|) =
The magnetization (|M|) distinguishes between the two phases and it
is called the order parameter. The critical temperature (3. is the Curie
temperature. The phase transition is of second order, which is a special
case of a continuous phase transition. For a continuous phase transition
the order parameter is continuous at 3 = 3, but it is non analytic{. For
a second order phase transition, its derivative is not continuous. This is
qualitatively depicted in figure [L3.1.

For 3 # B, the correlation function (12.45) behaves like in equa-
tion (12.46) resulting in a finite correlation length £(3). The correlation

*When B = 0 the system has an “up-down” Z; symmetry. This means that states
connected by the transformation s; — —s; for all ¢ result in the same Hamiltonian. In
this case we have two ground states and the system chooses one of them by spontaneously
breaking the Z5 symmetry.

*The vacuum structure of the antiferromagnetic system J < 0 for B = 0 is much
richer.

“In contrast, a first order phase transition is a transition where the order parameter
itself is discontinuous.

550 CHAPTER 13. D =2 ISING MODEL

C

T, T, T

Figure 13.3: The qualitative behavior of the magnetization (left) and the specific heat
(right) near the Ising model phase transition. The continuous line is the non analytic
behavior in the thermodynamic limit, whereas the dashed lines show the behavior of
the analytic, finite IV behavior. The latter converge to the former in the large NV limit
(thermodynamic limit).

lengthf] diverges as we approach the critical temperature, and its asymp-
totic behavior in this limit is given by the scaling relation

S (13.6)
Then the correlation function behaves according to {12.47)
1
GO (i, j) ~ - (13.7)
|57

Scaling behavior is also found for the specific heat C, the magnetization
M = (|M|) and the magnetic susceptibility x according to the relations

C o~ |t (13.8)
M ~ |t (13.9)
x ~ |t (13.10)

whereas the magnetization for ¢ = 0 and nonzero magnetic field B # 0
behaves like
M ~ B, (13.11)

*We mean the correlation length in the thermodynamic limit, i.e. we take the large
N limit first.

13.1. THE ISING MODEL 551

The exponents in the above scaling relations are called critical exponents
or scaling exponents. They take universal values, i.e. they don’t depend
on the details of the lattice construction or of the interaction. A whole
class of such models with different microscopic definitions have the exact
same long distance behaviorf]l The systems in the same universality class
need to share the same symmetries and dimensionality of space and the
fact that the interaction is of short range. In the particular model that
we study, these exponents take the so called Onsager exponent values

a=0, B=g5, 7=]
(13.12)
0=15, v=1, 77:%‘.

Theses exponents determine the non analytic behavior of the corre-
sponding functions in the thermodynamic limit. Non analyticity cannot
arise in the finite N model. The partition function (13.4) is a sum of
a finite number of analytic terms, which of course result in an analytic
function. The non analytic behavior manifests in the N — oo limit, where
the finite NV analytic functions converge to a non analytic one. The loss
of analyticity is related to the appearance of long distance correlations
between the spins and the scaling of the correlation length according to
equation (13.6).

The two phases, separated by the phase transition, are identified by the
different values of an order parameter. Each phase is characterized by the
appearance or the breaking of a symmetry. In the Ising model, the order
parameter is the magnetization and the symmetry is the Z, symmetry
represented by the transformation s; =+ —s;. The magnetization is zero
in the disordered, high temperature phase and non zero in the ordered,
low temperature phase. This implies that the magnetization is a non
analytic function of the temperatureﬂ.

Universality and scale invariance appear in the { — oo limit. In our
case, this occurs by tuning only one parameter, the temperature, to its
critical value. A unique, dynamical, length scale emerges from the corre-
lation function, the correlation length £. Scale invariance manifests when
the correlation length becomes much larger than the microscopic length

’i.e. at distances larger than the (diverging) correlation length.
“An analytic function which is zero in an arbitrarily small interval, it is - by Taylor
expanding around a point in this interval - everywhere zero.

552 CHAPTER 13. D =2 ISING MODEL

scale a when 8 — f3.. In the critical region, all quantities which are func-
tions of the distance become functions only of the ratio r/£. Everything
depends on the long wavelength fluctuations required by the symme-
try of the order parameter and all models in the same universality class
have the same long distance behavior. This way one can study only the
simplest model within a universality class in order to deduce the large
distance/long wavelength properties of all systems in the class.

13.2 Metropolis

Consider a square lattice with L sites on each side so that N = L x L = L?
is the number of lattice sites (vertices) and N; = 2N is the number of
links (bonds) between the sites. The relation N; = 2N holds because we
choose helical boundary conditions as shown in figure [13.6. The choice
of boundary conditions will be discussed later. On each site ¢ we have
one degree of freedom, the “spin” s; which takes on two values £1. We
consider the case of zero magnetic field B = 0, therefore the Hamiltonian
is given by[]

H = —ZSZ‘SJ‘. (1313)

(i)

The sum }_ .y is a sum over the links (ij), corresponding to the pairs of
sites ¢, j. Then 3, ., = (1/2) SN Zjvzl since each bond is counted twice
in the second sum. The partition function is

7 = Z Z Z e PHHs3 = Zeﬁz@ﬂ s (13.14)

s1==41 so==41 sy==+1 {si}

Our goal is to collect a sample of states that is distributed according to
the Boltzmann distribution (12.4). This will be constructed via a Markov

process accordini to the discussion in section [[2.6. Sampling is made

according to (12.53) and the expectation values are estimated from the
sample using (12.54). At each step the next state is chosen according
to (12.60), and for large enough sample, or “time steps”, the sample is
approximately in the desired distribution.

“"The constant J = 1 by choosing appropriate units for the s;.

13.2. METROPOLIS 553

Suppose that the system is in a stateﬁ . According to (12.66), the
probability that in the next step the system goes into the state v is

Plu—v)=gp—v)Alp—v), (13.15)

where g(p — v) is the selection probability of the state v when the system is
in the state y and A(u — v) is the acceptance ratio, i.e. the probability that
the system jumps into the new state. If the detailed balance condition

(12.60)

Plu—v) _gp—=v)Ap—v) _ s 13.16
Plv—p) gv—omAw—p -

is satisfied, then the distribution of the sample will converge to (12.4)
p, = e PP /7. In order that the system changes states often enough, the
probabilities P(y — v) should be of order one and the differences in the
energy I, — F, should not be too large. This means that the product of
the temperature with the energy difference should be a number of order
one or less. One way to accomplish this is to consider states that differ
by the value of the spin on only one site s; = £1 — s, F 1. Since the
energy (13.13) is a local quantity, the change in energy will be small.
More specifically, if each site has z = 4 nearest neighbors, the change of
the spin on site 4 results in a change of sign for » terms s;s; in ({13.13).
The change in the energy for each bond is +2. If the state p is given
by {si,...,8;,...,sn} and the state v by {si,...,s}, ..., sy} (i.e. all the
spins are the same except the spin s; which changes sign), the energy
difference will be

AE| <22 E,-2:<E,<E,+2z2. (13.17)

If the site ¢ is randomly chosen then

L (u,v) differ by one spin
9p—=v) =g —=p) = { év E)/jcbhel)"wise ! F ’ (13.18)
and the algorithm is ergodic. Then we have that
M — e BEv-Ey) (13.19)

Al — p)

“The state y is determined by a spin configuration {s;}i—1.. n.

554 CHAPTER 13. D =2 ISING MODEL

A simple choice for satistying this condition is ({12.61)
Alp — v) = Ag - e 28F—Fu) (13.20)

In order to maximize the acceptance ratios we have to take 4y = e 7.
Remember that we should have A(yx — v) <1 and |AE| < 2z. Therefore

Alp — v) = e 2PBv—But22) (13.21)
Figure depicts the dependence of A(; — v) on the change in energy

1f T T Tp=020 —— | 1
: 3=0.44
0.8 " B=0.60 0.8t
= » =
,o06 ~] . 06
= - ~- =1
I 04y , ~__ T 04
| . I | B=0.20 ——
0.2 0.2 | RZ0.44)
0 — o L_B=0.60
8 6 4 2 0 2 4 6 8 8 6 4 -2 0 2 4 6 8
AE AE

Figure 13.4: The acceptance ratio A(u — v) for the two dimensional Ising model on
a square lattice given by equation (13.21) (left) and the Metropolis algorithm (right) as
a function of the change in energy AE = E, — E,,. For the Metropolis algorithm the
acceptance ratios are larger and the algorithm is expected to perform better.

for different values of 3. We observe that this probability is small even
for zero energy change and we expect this method not to perform very
well.

It is much more efficient to use the algorithm proposed by Nicolas
Metropolis et. al. 1953 [62] which is given by (12.63)

—B(Ev—Eu) E,— FE
Alp = v) = { : 55 g 8 . (13.22)

According to this relation, when a change in the states lowers the energy,
the change is always accepted. When it increases the energy, the change
is accepted with a probability less than one. As we can see in figure ,
this process accepts new states much more frequently than the previous
algorithm.

13.3. IMPLEMENTATION 555

The Metropolis algorithm is very widely used. It is applicable to any
system, it is simple and efficient. We note that the choice to change the
spin only locally is not a restriction put by the metropolis algorithm.
There exist efficient algorithms that make non local changes to the sys-
tem’s configuration that (almost) conserve the Hamiltonianﬁ and, conse-
quently, the acceptance ratios are satisfactorily large.

13.3 Implementation

The first step in designing a code is to define the data structure. The
degrees of freedom are the spins s; = £1 which are defined on NV lattice
sites. The most important part in designing the data structure in a lattice
simulation is to define the neighboring relations among the lattice sites
in the computer memory and this includes the implementation of the
boundary conditions. A bad choice of boundary conditions will make
the effect of the boundary on the results to be large and increase the
finite size effects. This will affect the speed of convergence of the results
to the thermodynamic limit, which is our final goal. The most popular
choice is the toroidal or periodic boundary conditions. A small variation
of these lead to the so called helical boundary conditions, which will be
our choice because of their simplicity. Both choices share the fact that
each site has the same number of nearest neighbors, which give the same
local geometry everywhere on the lattice and minimize finite size effects
due to the boundary. In contrast, if we choose fixed or free boundary
conditions on the sides of the square lattice, the boundary sites have a
smaller number of nearest neighbors than the ones inside the lattice.

One choice for mapping the lattice sites into the computer memory
is to use their coordinates (i,j), i,j = 0,...,L — 1. Each spin is stored
in an array s[L][L]. For a site s[i] [j] the four nearest neighbors are
s[i£11[j], s[il[j*1]. The periodic boundary conditions are easily
implemented by adding L to i,j each time they become less than one
or greater than L. This is shown in figures [13.5 and [13.30.

The elements of the array s[L] [L] are stored linearly into the com-
puter memory. The element s[i] [j] is at a “distance” i*L+j array po-
sitions from s[0] [0] and accessing its value involves an, invisible to the

An example is the Hybrid Monte Carlo used in lattice QCD simulations.

556 CHAPTER 13. D =2 ISING MODEL

0123401234012 3 4
56 78 9|56 7 8 9|56 7829
10 11 12 13 14|10 11 12 13 14 |10 11 12 13 14
1516 17 18 19|15 16 17 18 19 |15 16 17 18 19
20 21 22 23 24|20 21 22 23 24 |20 21 22 23 24

0123 410123401234
56 78 9|56 7 8 9|56 7829
10 11 12 13 14|10 11 12 13 14 |10 11 12 13 14
1516 17 18 19|15 16 17 18 19 |15 16 17 18 19
2021 22 23 24|20 21 22 23 24 |20 21 22 23 24
0123 4,012 34|]01234
56 78 9|56 7 8 9|56 789
10 11 12 13 14|10 11 12 13 14 |10 11 12 13 14
1516 17 18 19|15 16 17 18 19 |15 16 17 18 19
20 21 22 23 24|20 21 22 23 24 |20 21 22 23 24

Figure 13.5: An L = 5 square lattice with periodic ~boundary conditions. The
topology is toroidal.

programmer, multiplication. Using helical boundary conditions this mul-
tiplication can be avoided. The positions of the lattice sites are now given
by one number i =0,..., N — 1, where N = L?, as shown in figures
and . The spins are stored in memory in a one dimensional ar-
ray s[N] and the calculation of the nearest neighbors of a site s[i] is
easily done by taking the spins s[i+1] and s[i£L]. The simplicity of
the helical boundary conditions is based on the fact that, for the nearest
neighbors of sites on the sides of the square, all we have to do is to make
sure that the index i stays within the accepted range 0< i < N-1. This
is easily done by adding or subtracting N when necessary. Therefore in
a program that we want to calculate the four nearest neighbors nn of a
site i, all we have to do is:

if ((nn=1i+XNN)>= N) nn —=
if ((nn=i—XNN)< O) nn +=
if ((nn=i+YNN)>= N) nn —=
if ((nn=i—YNN)< O) nn +=

=2=2=2=

13.3. IMPLEMENTATION 557

0 1 2 3 4
0 12 3456789
0 1 2 3 45 6 7 8 9/10 1112 1314
5 6 7 8 9|10 11 12 13 14|15 16 17 18 19
10 11 12 13 14|15 16 17 18 19|20 21 22 23 24
15 16 17 1819|120 2122 2324| 0 1 2 3 4
20 2122 232410 1 2 3 4|5 6 7 8 9

12 3 45 6 7 8 910 1112 13 14
5 6 7 8 9/10 11 12 13 14|15 16 17 18 19
10 11 12 13 14|15 16 17 18 19|20 21 22 23 24
15 16 17 18 19|20 2122 2324{ 0 1 2 3 4
20 2122 2324 0 1 2 3 4|5 6 7 8 9
0 12 3 45 6 7 8 9(10 1112 1314
5 6 7 8 9|10 11 12 13 14|15 16 17 18 19
10 11 12 13 14|15 16 17 18 19|20 21 22 23 24

15 16 17 18 19|20 21 22 23 24
20 21 22 23 24

Figure 13.6: An L = 5 square lattice with helical boundary conditions. The topology
is toroidal.

We will choose helical boundary conditions for their simplicity and
efficiency in calculating nearest neighborsf.

The dynamics of the Monte Carlo evolution is determined by the
initial state and the Metropolis algorithm. A good choice of initial con-
figuration can be important in some cases. It could lead to fast or slow
thermalization, or even to no thermalization at all. In the model that we
study it will not play an important role, but we will discuss it because of
its importance in the study of other systems. We may choose a “cold”
(8 = +oo - all spins aligned) or a “hot” (5 = 0 - all spins are equal to
+1 with equal probability 1/2) initial configuration. For large lattices,
it is desirable to start in one of these states and then lower/increase the
temperature in small steps. Each time that the temperature is changed,

“On the bad side, helical boundary conditions introduce a small finite size effect
due to the shift of lattice positions in neighboring copies of the lattice. If one has to
study small lattices, especially in higher dimensions, the best choice is to use periodic
boundary conditions. We are going to study large enough lattices that this finite size
effect is negligible.

558 CHAPTER 13. D =2 ISING MODEL

the spin configuration is saved and used in the next simulation.

Ergodicity and thermalization must be checked by performing inde-
pendent simulations/] and verify that we obtain the same results. Simi-
larly, independent simulations starting from different initial states must
also be checked that yield the same results.

Consider each step in the Markov process defined by the Metropolis
algorithm. Assume that the system is in the state = {s},...,s},..., s}
and consider the transition to a new state v = {s},...,s},...,sX} which
differs only by the value of the spin s} = —s/ (spin flip), whereas all the
other spins are the same: s7 = s Vj # k. The energy difference between
the two states is

E,—E, = (—28585)—(—28?87)
ij (i5)
= —Zs —Sk
= 223 sk,

(ik)

= 25';: ZS? y (13.23)

where the second line is obtained after the cancellation of the common
terms in the sums. In the third line we used the relation s} — s = —2s/,
which you can prove easily by examining the cases s = +1 separately.
The important property of this relation is that it is local since it depends
only on the nearest neighbors. The calculation of the energy difference
E, — E, is fast and is always a number of order onef{.

The Metropolis condition is easily implemented. We calculate the
sum in the parenthesis of the last line of equation ({13.23) and obtain the
energy difference £, — E/,. If the energy decreases, i.e. £, — E, <0, the
new state v is accepted and “we flip the spin”. If the energy increases,
i.e. £, — E, >0, then the acceptance ratio is A(u — v) = e #EBEw) < 1,
In order to accept the new state with this probability we pick a random
number uniformly distributed in 0 < 2 < 1. The probability that this

*Different sequence of random numbers.
®An important fact is that it does not increase with the system size.

13.3. IMPLEMENTATION 559

number is = < A(u — v) is equal tof] A(u — v). Therefore if z < A(y —
v) the change is accepted. If x > A(y — v) the change is rejected and
the system remains in the same state p.

A small technical remark is in order: The possible values of the sum

(Z(ik> sﬁ‘) = —4,-2,0,2,4 and these are the only values that enter in

the calculation of A(y — v). Moreover, only the values that increase
the energy, i.e. 2,4 are of interest to us. Therefore we only need two
values of A(u — v), which depend only on the temperature. These can
by calculated once and for all in the initialization phase of the program,
stored in an array and avoid the repeated calculation of the exponential
e #(Ev—Ex) which is expensive.

In our program we also need to implement the calculation of the
observables that we want to measure. These are the energy ((13.13)

E=-) sis;, (13.24)
(ig)

and the magnetization

M = Zsi . (13.25)

Beware of the absolute value in the last equation! The Hamiltonian H has
a Z, symmetry because it is symmetric under reflection of all the spins.
The probability of appearance of a state depends only on the value of H,
therefore two configurations with opposite spin are equally probable. But
such configurations have opposite magnetization, therefore the average
magnetization (), s;) will be zero due to this cancellation|.

We can measure the energy and the magnetization in two ways. The
first one is by updating their values each time a Metropolis step is ac-
cepted. This is easy and cheap since the difference in the sum in equa-
tions (13.24) and ({13.25) depends only on the value of the spin s/ and its
nearest neighbors. The energy difference is already calculated by (13.23)

“For the uniform distribution P(z < a) = a.

"*This does not show for very small temperatures in the simulation with the Metropo-
lis algorithm. As we decrease the temperature 3 > f., it takes many improbable steps
to move from a state with) s, = M; to a state with) . s, = —M;. The Monte Carlo
simulation consists of a finite number of steps, therefore we may obtain a non zero
(D=, si), an incorrect result.

560 CHAPTER 13. D =2 ISING MODEL

whereas the difference in the magnetization in ({L3.25) is given by

Z sy — Z st = s} — sl = =25 (13.26)

The second way is by calculating the full sums in (3.24) and ({13.25)

every time that we want to take a measurement. The optimal choice de-

pends on how often one obtains a statistically independent measurement .

If the average acceptance ratio is A, then the calculation of the magneti-

zation using the first method requires AN additions per N Monte Carlo

steps, whereas the second one requires N additions per measurement.
We use the normalization

1 1
(e) = E<E> = ﬁ@, (13.27)

which gives the energy per link. We have that —1 < e < +1, where
e = —1 for the ground state in which all 2N links have energy equal to
—1. The magnetization per site is

(m) = —(M). (13.28)

We have that 0 < m < 1, where m = 0 for 8 = 0 (perfect disorder) and

m = 1 for the ground state at 5 = oo (perfect order). We call m the order

parameter since its value determines the phase that the system is in.
The specific heat is given by the fluctuations of the energy

¢ = BN{(e - (€))2) = BN((e%) — (e)?). (13.29)

and the magnetic susceptibility by the fluctuations of the magnetization
X = BN{(m = (m))?) = BN ((m*) — (m)). (13.30)

In order to estimate the amount of data necessary for an accurate
measurement of these quantities, we consider the fact that for n indepen-
dent measurements the statistical error drops as ~ 1/y/n. The problem
of determining how often we have independent measurements is very
important and it will be discussed in detail later in this chapter.

“This is given by the autocorrelation time, which will be discussed in detail later.

13.3. IMPLEMENTATION 561

13.3.1 The Program

In this section we discuss the programf| that implements the Monte
Carlo simulation of the Ising model. The code in this section can be
found in the accompanying software of this chapter in the directory
Ising_Introduction.

In the design of the code, we will follow the philosophy of modular
programming. Different independent sections of the program will be
coded in different files. This makes the development, maintenance and
correction of the code by one or a team of programmers easier. A header
file contains the definitions which are common for the code in one or
more files. Then, all the parameters and common functions are in one
place and they are easier to modify. In our case we have one such file
only, named include.h, whose code will be included in the beginning of
each program unit using an #include directive:

// include .h
#include <iostream >
#include <fstream >
#include <iomanip>
#include <random>

using namespace std;

#include “MIXMAX/mixmax.hpp”

const int L = 12;
const int N = L¥IL3
const int XNN = 1;
const int YNN = L;
extern int s[N];
extern int seed;

extern double beta;

extern double prob[b];

extern mixmax_engine mxmx;

extern uniform_real _distribution<double> drandom;

int EO) ,MO);
void init(int), met(), measure();

*The basic ideas in the program are taken from the book by Newmann and Barkema

[4].

562 CHAPTER 13. D =2 ISING MODEL

The lattice size L is a constant parameter, whereas the arrays and
variables encoding the spins and the simulation parameters are put in
the global scope. For that, they must be declared as external in all files
used, and then be defined in only one of the files (in our case in the file
init.cpp). The array s[N] stores the spin of each lattice site which takes
values +1. The variable beta is the temperature 3 and the array prob[5]
stores the useful values of the acceptance ratios A(u — v) according to
the discussion on page p59. The distribution drandom generates pseudo-
random numbers uniformly distributed in the interval [0, 1) and mxmx is a
MIXMAX random generator engine object. The parameters XNN and YNN
are used for computing the nearest neighbors in the X and Y directions
according to the discussion of section on helical boundary condi-
tions. For example, for an internal site i, i+XNN is the nearest neighbor
in the +z direction and i-YNN is the nearest neighbor in the —y direction.

The main program is in the file main.cpp and drives the simulation:

/] main . cpp
#include ”"include.h”

int main(int argc, char **argv){

const int nsweep = 200000;
int start=1;//(0 cold)/(1 hot)

beta=0.21;seed=9873;
init(start);
for(int isweep=0;isweep<nsweep;isweep++)]{
met () ;
measure () ;
}
}

In the beginning we set the simulation parameters. The initial con-
figuration is determined by the value of start. If start=0, then it is a
cold configuration and if start=1, then it is a hot configuration. The
temperature is set by the value of beta and the number of sweeps of
the lattice by the value of nsweep. One sweep of the lattice is defined
by N attempted spin flips. The flow of the simulation is determined by
the initial call to init, which performs all initialization tasks, and the
subsequent calls to met and measure, which perform nsweep Metropolis

13.3. IMPLEMENTATION 563

sweeps and measurements respectively.
One level down lies the function init. The value of start is passed
through its argument so that the desired initial state is set:

/] init.cpp
// file init.cpp

// init(start): start
// start
[/
#include “include.h”

// Global variables:

int s[N];

int seed;

double beta;

double prob[5];

mixmax_engine mxmx(0,0.,0.1);

uniform_real distribution<double> drandom;

0: cold start
1: hot start

void init(int start) {
int i;

mxmx . seed (seed) ;
//Initialize probabilities:
for(i=2;i<5;i+=2) prob[i] = exp(—2.0*beta*i);
// Initial configuration:
switch (start) {
case 0://cold start
for (i=0;i<N;i++) s[i]=1;
break;
case 1://hot start
for (i=0;i<N;i++){
if (drandom (mxmx) < 0.5)
s[i] = 1;
else
s[i] = —1;
}
break;
default:
cout < "start= 7 < start
< 7 not valid. Exiting....\n”;
exit (1) ;
break;
}
}

564 CHAPTER 13. D =2 ISING MODEL

Notice that all variables in the global scope, declared as external in
the header include.h, are defined in the beginning of this file, despite of
the fact that the external statements are also included.

At first the array prob[5] is initialized to the values of the acceptance

ratios A(y — v) = e PE—EW) = e 2054 (Zem). Those probabilities are
going to be used when s (Z<ik> st) > 0 and the possible values are

obtained when this expression takes the values 2 and 4. These are the
values stored in the array prob[5], and we remember that the index of
the array is the expression s}, (Z (i) st!), when it is positive.

The initial spin configuration is determined by the integer start.
The use of the switch block allows us to add more options in the fu-
ture. When start=0 all spins are set equal to 1, whereas when start=1
each spin’s value is set to £1 with equal probability. The probability
that drandom (mxmx)<0.5 isf] 1/2, in which case we set s[i]=1, otherwise
(probability 1 — 1/2 = 1/2) we set s[i]=-1.

The heart of the program is in the function met () which attempts N
Metropolis steps. It picks N random sites and asks the question whether
to perform a spin flip. This is done using the Metropolis algorithm by
calculating the change in the energy of the system before and after the

change of the spin value according to ([13.23):

/] met. cpp
#include “include.h”

void met () {
int i,k;
int nn,snn,dE;
for (k=0;k<N;k++){

i=N*drandom(mxmx); //pick a random site i
//Sum of neighboring spins:

if ((nn=i+XNN)>= N) nn —= N; snn = s[nn];
if ((nn=i—XNN)< O0) nn 4= N; snn += s[nn];
if ((nn=i4+YNN)>= N) nn —= N; snn += s[nn];

if ((nn=i—YNN)< O) nn 4= N; snn += s[nn];
//change in energy/2

dE = snn*s[i];

"Remember that for the uniform distribution, P(z < a) = a

13.3. IMPLEMENTATION 565

// tlip
if (dE <=0) {s[i]
else if(drandom(mxmx)<prob[dE]){s[i]

} //sweep ends

}

—s[i];} //accept
—s[i];} //accept

The line

i=N*drandom(mxmx) ;

picks a site i=0,...,N-1 with equal probability. It is important that
the value i=N never appears, something that could have happened if
drandom(mxmx)=1.0 were possible.

Next, we calculate the sum (Z (k) sﬁ‘> in (13.23). The nearest neigh-

bors of the site i have to be determined and this happens in the lines

if ((nn=i+XNN)>= N) nn —= N; snn = s[nn];
if ((nn=i—XNN)< O0) nn += N; snn += s[nn];
if ((nn=i+YNN)>= N) nn —= N; snn += s[nn];
if ((nn=i—YNN)< O) nn 4= N; snn += s[nn];

dE = snn*s[i];

The variable dE is set equal to the product (13.23) si (Z ik S¢) If it

turns out to be negative, then the change in the energy is negative and
the spin flip is accepted. If it turns out to be positive, then we apply
the criterion (13.22) by using the array prob[5], which has been defined
in the function init. The probability that drandom(mxmx)<prob[dE] is
equal to prob[dE], in which case the spin flip is accepted. In all other
cases, the spin flip is rejected and s[i] remains the same.

After each Metropolis sweep we perform a measurement. The code
is minimal and simply prints the value of the energy and the magnetiza-
tion to the stdout. The analysis is assumed to be performed by external
programs. This way we keep the production code simple and store the
raw data for a detailed and flexible analysis. The printed values of the
energy and the magnetization will be used as monitors of the progress of
the simulation, check thermalization and measure autocorrelation times.
Plots of the measured values of an observable as a function of the Monte
Carlo “time” are the so called “time histories”. Time histories of appro-
priately chosen observables should always be viewed and used in order

566 CHAPTER 13. D =2 ISING MODEL

to check the progress and spot possible problems in the simulation.
The function measure calculates the total energy and magnetization
(without the absolute value) by a call to the functions E() and M(), which

apply the formulas (13.24) and ([13.25).

// measure . cpp
#include “include.h”

void measure () {
cout <K E() << 7 7 K MO K '\n’;
}

int EQ{

int e,snn,i,nn;

e=0;

for(i=0;i<N;i++){
//Sum of neighboring spins:
//only forward nn necessary in the sum
if ((nn=i+XNN)>= N) nn —= N; snn = s[nn];
if ((nn=i+YNN)>= N) nn —= N; snn += s[nn];
e += snn*s[il];

)

return —e;

}

int MO {
int i,m;
m=0;
for (i=0;i<N;i++) m+=s[i];
return m;

The compilation of the code is don